國立臺北科技大學 101 學年度碩士班招生考試

系所組別:1512 自動化科技研究所甲組

第二節 自動控制 試題(選考)

第一頁 共一頁

注意事項:

- 1. 本試題共五題,配分共100分。
- 2. 請標明大題、子題編號作答,不必抄題。
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。
- 1. Determine the controller gains k_1 , k_2 , and k_3 for the system such that the following two conditions are satisfied. (15%)
- i. The steady state error e_{ss} due to a step input is zero. (e = r y)
- ii. The complex roots of the characteristic equation are $-1 \pm j$.

2. Consider a closed-loop system shown in the following figure

where
$$G(S) = \frac{64K}{S(S+4)(S+16)}$$
, $H(S) = 1$ and $E(S) = R(S) - Y(S)$

(1)Sketch the root locus. (20%)

- (2) Determine the range of K for which the system is stable. (5%)
- (3) Determine the range of K such that the steady state error e(t) is less than 0.1 with a ramp input r(t) = t, $t \ge 0$. (5%)
- (4) Find the steady state error e(t) for an unit-step input r(t) = 1, $t \ge 0$. (5%)
- 3. Plot the Nyquist Plot and determine the range of "K" for stability. (20%)

4. Find the controller value of $u = -[k_1 \quad k_2 \quad k_3]x$ such that the closed-loop eigenvalues are $-2 \pm 2j$, and -3. (15%)

$$\dot{x} = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 5 & 2 \\ 0 & 1 & -1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

5. Consider the following system

$$\dot{x} = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} u$$

(1) Is it possible to find a gain vector \mathbf{K} such that $\mathbf{u} = \mathbf{K}\mathbf{x} + \mathbf{r}$ has

$$-2, -2, -1, -1?$$
 (5%)

(2) How about
$$-2$$
, -2 , -2 , -1 ? (5%)

$$-2, -2, -2, -2?$$
 (5%)