國立臺北科技大學 101 學年度碩士班招生考試

系所組別:1511、1512 自動化科技研究所 甲組

第一節 工程數學 試題

第一頁 共一頁

注意事項:

- 1. 本試題共六題,配分共100分
- 2. 請標明大題、子題編號作答,不必抄題。
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。
- 1.(15%)For vector space
 - (1)(5%)Let v_1, v_2, \dots, v_m are the vectors of vector space V. Explain that linearly dependent and linearly independent for v_1, v_2, \dots, v_m .
 - (2)(5%) Are cos(x) and sin(x) linearly dependent or linearly independent? Why?

(3)(5%)Let
$$A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$, $C = \begin{bmatrix} -1 & -2 \\ -3 & -5 \end{bmatrix}$, $D = \begin{bmatrix} -1 & -2 \\ 0 & -2 \end{bmatrix}$. Are A, B, C,

- D, linearly dependent or linearly independent? Why?
- 2.(15%) If u and v are any two vectors in an inner product space V, then

$$|\langle u, v \rangle| \leq ||u|| ||v||$$

Equality holds if and only if u and v are linearly dependent. Please prove this Cauchy-Schwarz theorem.

- 3 (20%) For each matrix, find the characteristic equation, and the eigenvalues and associated eigenvectors
 - (1)(10%)

8 -1

(2)(10%)

4.(20%) Shows the following operations are isotropic (invariant to rotation)

(1)(10%)The Laplacian operation

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

(2)(10%)The magnitude of the gradient

$$\left|\nabla f\right| = mag(\nabla f) = \left[G_x^2 + G_y^2\right]^{1/2} = \left[\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2\right]^{1/2}$$

5.(15%) Solve the differential equation by Laplace transform.

$$y'' + y = \delta(x-1)$$
 $0 < x < 2$

The boundary conditions are y(0)=0 and y(2)=0.

6.(15%) Solve the differential equations

$$mx_1'' + (k + k_1)x_1 - k_1x_2 = 0$$

$$mx_2'' + (k+k_1)x_2 - k_1x_1 = 0$$

where m, k, and k_1 are positive real number.