國立臺北科技大學 101 學年度碩士班招生考試

系所組別:1112機電整合研究所甲組

第二節 自動控制 試題(選考)

第一頁 共一頁

注意事項:

- 1. 本試題共5題,配分共100分。
- 2. 請標明大題、子題編號作答,不必抄題。
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。
- 1. (20%) Please step by step draw the Nyquist plot of the following open-loop transfer function and determine the range of K such that its close-loop system can be stable.

$$G(s)H(s) = \frac{K}{s(s+2)^2}$$

2. (20%) A unit feedback control system has feed-forward transfer function as

$$\frac{K}{s(s+2)(s^2+4s+8).}$$

Please sketch the closed-loop root locus step by step as K varying from zero to infinity.

- 3. (20%) What is PID control law (4%)? Please write down its expressions and explain the advantages and disadvantages of each component (16%).
- 4. (20%) An armature controlled DC servomotor is used in a position control system as depicted in the following drawing. All the necessary parameters and variables are also listed. Other effects if not listed are negligible.

 R_a = armature resistance

 $i_a = armature current$

 $e_a = applied armature voltage$

 $e_b = back \ emf$

 $K_m = motor torque constant$

 $K_b = motor \ back \ emf \ constant$

 $K_a = power amplifier voltage gain$

 K_p = potentiometer voltage to angle proportional constant

 θ = angular displacement of the motor shaft

 θ_d = angular displacement of control knob

T = torque developed by the motor

J = equivalent moment of inertia in the motor shaft

 $b = equivalent \ viscous \ friction \ coefficient \ in \ the \ motor \ shaft$

e = error signal

- (1) List all the equations necessary for modeling (4%).
- (2)Draw a block diagram showing every detail of the system (4%).
- (3) Find the transfer function of $\Theta(s)/\Theta_d(s)$ (4%).
- (4)Determine the damping ratio, ζ , and undamped natural frequency, ω_n , of the system (4%).
- (5) Determine the unit step response of the system in terms of ζ and ω_n (4%).
- 5. (20%) A unit feedback system has its Nichols diagram as in the following. Please determine its (1) phase margin and gain margin (8%), (2) closed-loop peak resonance amplitude ratio and frequency (8%), (3) closed-loop bandwidth (4%).

