國 立 雲 林 科 技 大 學
101 學年度碩士班暨碩士在職專班招生考試試題

系所：䉓子光電所
科目：電磁學

1．Suppose a propagating electric field is given by
$E(z, t)=34 e^{-0.002 z} \cos \left(2 \pi \times 10^{9} t-10 \pi z+45^{\circ}\right) \mathrm{V} / \mathrm{m}$ ．Find
（a）the initial amplitude，（b）the attenuation constant，（c）the wave frequency，
（d）the wavelength and（e）the phase shift in radians，including the unit．（15\％）

2．（a）Find out the integral $\int \frac{d x}{\left(x^{2}+a^{2}\right)^{3 / 2}}$（5\％）
（b）A segment of line charge $\rho_{\mathrm{L}}=10 \mathrm{nC} / \mathrm{m}$ exists on the x－axis from $x=-3.0 \mathrm{~m}$ to $x=+3.0 \mathrm{~m}$ ． Determine \mathbf{E} at the point $(0.0,3.0,0.0) \mathrm{m} .(12 \%)$

3．（a）Find the inductance per unit length（ L / h ）internal to a solid conductive wire with radius a ， and with current I distributed evenly over the cross section．（6\％）
（b）A coaxial cable（coax）consists of a pair of cylindrical metallic shells of inner radius a and outer radius b ．Determine the inductance per unit length (L / h) of the coax．（6\％）
（c）Consider a coaxial cable with solid inner conductor of radius a and a conductive outer shell at radius b ，filled with nonmagnetic material $\left(\mu_{\mathrm{r}}=1\right)$ ．Find the total inductance per unit length $(L / h) .(6 \%)$

4．The magnetic flux density increases at the rate of $10 \mathrm{~Wb} / \mathrm{m}^{2} / \mathrm{s}$ in the z direction．A 10×10 cm square conducting loop，centered at the origin in the $x-y$ plane，has 10Ω of distributed resistance．Determine the direction（with a sketch）and magnitude of the induced current in the conducting loop．（ 12% ）

5．Find \bar{H} ，if a uniform current density $\bar{J}=\hat{a}_{z} J_{0}\left(\mathrm{~A} / \mathrm{m}^{2}\right)$ ，or a vector magnetic potential $\bar{A}=\hat{a}_{z} \frac{-\mu_{0} J_{0}}{4}\left(x^{2}+y^{2}\right)(\mathrm{Wb} / \mathrm{m})$ are given．(12%)

6．If $\vec{D}=2 r \hat{a}_{R} C / m^{2}$ ，find the total electric flux leaving the surfaces of the cube where $0<\mathrm{x}, \mathrm{y}, \mathrm{z}<0.4 \mathrm{~m} .(10 \%)$

7．What are the Maxwell equations in integral form？（8\％）

8．The surface $x=0$ separates two perfect dielectrics（no free charge）．For $x>0$ ，let $\varepsilon_{r l}=3$ ， while $\varepsilon_{\mathrm{r} 2}=5$ where $\mathrm{x}<0$ ．Find \vec{D}_{2} ，for $\mathrm{x}<0$ ，if $\vec{E}_{1}=80 \hat{a}_{x}-60 \hat{a}_{y}-30 \hat{a}_{z} \mathrm{~V} / \mathrm{m}$ for $\mathrm{x}>0 .(8 \%)$

