國 立 雲 林 科 技 大 學
 系所：電子光電所 101 學年度碩士班暨碩士在職專班招生考試試題

1．（a）(5%)
Figure 1（a）shows the equivalent circuit of an amplifier．Please derive the voltage gain V_{0} / V_{s} of amplifier as a function of frequency．

Fig．1（a）
（b）（ 10% ）
Figure 1（b）shows the bias circuit．Please derive DC voltage $V_{R E F}$ ．

Fig．1（b）

＊國 立 雲 林 科 技 大學
 系所：電子光電所
 101 學年度碩士班暨碩土在職專班招生考試試題 科目：電子學（2）

2．Figure 2 illustrates an application of op－amp．Assume that the op－amp is ideal．
（a）（5\％）Find the resistances looking into node 1 to node $4, R_{1}$ to R_{4} ．
（b）（5\％）Find the currents I_{1}, I_{2}, I_{3} ，and I_{4} in terms of the input current I ．

Fig． 2

3．Figure 3 shows an output amplifier．Assume that $v_{I N}$ sweeps from -2.5 V to +2.5 V ．
Let $K_{p}{ }^{\prime}=50 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{t p}=-0.7 \mathrm{~V}$ ，and $\lambda_{p}=0.05 \mathrm{~V}^{-1}$ ．Ignore buik effects．
（a）（ 5% ）Find the maximum value of $v_{o u t}$ ．
（b）（ 10% ）Find the minimum value of $v_{\text {out }}$ ．
（c）（ 10% ）Find the positive and negative slew rate， $\mathrm{SR}+$ and SR －，when $v_{\text {out }}=0 \mathrm{~V}$ ．

Fig． 3

4．For the circuits in Fig．4，$\mu_{n} \operatorname{Cox}=2.5 \mu_{p} C o x=20 \mu \mathrm{~A} / \mathrm{V}^{2},\left|V_{i}\right|=1 \mathrm{~V}, \lambda=0, \gamma=0, L=10 \mu \mathrm{~m}$ and $W=30 \mu \mathrm{~m}$ ．
（a）（ 10% ）Find I_{a} and V_{a} in Fig． 4 （a）．
（b）（10\％）Find I_{b} and V_{b} in Fig． 4 （b）．
（c）（ 10% ）Find I_{c} and V_{c} in Fig． 4 （c）with $L=10 \mu \mathrm{~m}$ and $W=75 \mu \mathrm{~m}$ for M_{5} ．

Fig．4（a）

Fig．4（b）

Fig．4（c）

5．In the circuit of Fig．5，transistor M_{1} and M_{2} have $V_{t}=0.5 \mathrm{~V}$ ，and the process transconductance parameter $k_{n}{ }^{\prime}=50 \mu \mathrm{~A} / \mathrm{V}^{2}$ ．Assuming $\lambda=0$ ，find V_{1}, V_{2} ，and V_{3} for each of the following cases：
（a）$(4 \%)(W / L)_{1}=(W / L)_{2}=20$
$(\mathrm{b})(4 \%)(W / L)_{1}=2(W / L)_{2}=10$

Fig． 5

6．The shunt－shunt feedback amplifier in Fig． 6 has $I=1 \mathrm{~mA}$ and $V_{G S}=0.8 \mathrm{~V}$ ．The MOSFET has V_{t} $=0.6 \mathrm{~V}$ and $V_{A}=30 \mathrm{~V}$ ．For $R_{s}=10 \mathrm{~K} \Omega, R_{I}=1 \mathrm{M} \Omega$ ，and $R_{2}=4.7 \mathrm{M} \Omega$ ，
（a）(4%) find the voltage gain v_{o} / v_{s} ．
（b）（4\％）find the input resistance $R_{i n}$ ．
（c）（4\％）find the output resistance $R_{\text {out }}$ ．

Fig． 6

