₩ 國立雲林科技大學

學 系所:電子光電所 :職事班招生考試試題 科目:電子學(2)

1. (a)(5%)

Figure 1(a) shows the equivalent circuit of an amplifier. Please derive the voltage gain V_o/V_s of amplifier as a function of frequency.

Fig. 1(a)

(b)(10%)

Figure 1(b) shows the bias circuit. Please derive DC voltage V_{REF} .

Fig. 1(b)

系所:電子光電所

國立雲林科技大學
101 學年度碩士班暨碩士在職專班招生考試試題 科目: 電子學(2)

2. Figure 2 illustrates an application of op-amp. Assume that the op-amp is ideal. (a)(5%) Find the resistances looking into node 1 to node 4, R_1 to R_4 . (b)(5%) Find the currents I_1 , I_2 , I_3 , and I_4 in terms of the input current I.

Fig. 2

- 3. Figure 3 shows an output amplifier. Assume that v_{IN} sweeps from -2.5V to +2.5V. Let $K_p' = 50\mu A/V^2$, $V_{tp} = -0.7V$, and $\lambda_p = 0.05V^{-1}$. Ignore bulk effects. (a)(5%) Find the maximum value of v_{OUT} .
 - (b)(10%) Find the minimum value of v_{OUT} .
 - (c)(10%) Find the positive and negative slew rate, SR+ and SR-, when v_{OUT} =0V.

Fig. 3

國 立 雲 林 科 技 大 學 101 學年度碩士班暨碩士在職專班招生考試試題

系所:電子光電所 科目: 電子學(2)

4. For the circuits in Fig. 4, $\mu_n Cox = 2.5 \, \mu_p Cox = 20 \, \mu A/V^2$, $|V_t| = 1 \, \text{V}$, $\lambda = 0$, $\gamma = 0$, $L = 10 \, \mu \text{m}$ and $W = 30 \mu m$.

- (a)(10%) Find I_a and V_a in Fig. 4 (a).
- (b)(10%) Find I_b and V_b in Fig. 4 (b).
- (c)(10%) Find I_c and V_c in Fig. 4 (c) with $L = 10 \mu m$ and $W = 75 \mu m$ for M_5 .

- 5. In the circuit of Fig. 5, transistor M_1 and M_2 have $V_1 = 0.5$ V, and the process transconductance parameter $k_n' = 50 \,\mu\text{A/V}^2$. Assuming $\lambda = 0$, find V_1 , V_2 , and V_3 for each of the following cases:
- (a)(4%) $(W/L)_1 = (W/L)_2 = 20$
- (b)(4%) $(W/L)_1 = 2 (W/L)_2 = 10$

Fig. 5

系所:電子光電所

國 立 雲 林 科 技 大 學 101 學年度碩士班暨碩士在職專班招生考試試題 科目:電子學(2)

6. The shunt-shunt feedback amplifier in Fig. 6 has I = 1 mA and $V_{GS} = 0.8$ V. The MOSFET has V_t = 0.6 V and V_A = 30 V. For R_s = 10 K Ω , R_I = 1 M Ω , and R_2 = 4.7 M Ω ,

- (a)(4%) find the voltage gain v_0/v_s .
- (b)(4%) find the input resistance R_{in} .
- (c)(4%) find the output resistance R_{out} .

Fig. 6