1． 2.0 mol of ammonia gas with $C_{p, m}=35.06 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ is initially at 298 K ．It undergoes reversible adiabatic expansion from $1.00 \mathrm{dm}^{3}$ to $4.00 \mathrm{dm}^{3}$ ．Calculate the final temperature，the work done and the change of internal energy for the process．

2．The normal boiling point of naphthalene $\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)$ is 491 K ．If the vapour pressure of the liquid is 1.3 kPa at 359 K and 5.3 kPa at 392 K ．（a）use the Trouton＇s rule to estimate the enthalpy of vaporization；（b）use the Clausius－Clapeyron equation to calculate the enthalpy of vaporization and the entropy of vaporization at the normal boiling point．

3．The mass percentage composition of dry air at 298 K is approximately： $\mathrm{N}_{2}=75.5 \%$ ； $\mathrm{O}_{2}=23.2 \% ; \mathrm{Ar}=1.3 \%$ ．Calculate the Gibbs energy，entropy，and enthalpy of mixing when it is prepared from the pure and perfect gases．

4．The equilibrium constant of a reaction is found to fit the expression $\ln K=A+B / T+C / T^{2}$ between 400 K and 600 K with $A=-1.76, B=-1368 \mathrm{~K}$ ， and $C=1.1 \times 10^{5} \mathrm{~K}^{2}$ ．Calculate the standard reaction enthalpy and standard reaction entropy at 500 K ．

5．Calculate the change in K_{x} for the reaction $2 \mathrm{NH}_{3}(\mathrm{~g}) \Leftrightarrow 3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g})$ when the total pressure is increased from 1.0 bar to 3.0 bar at constant temperature．

6．Deduce an expression for the time it takes for the concentration of a substance（A） to fall to one－third its initial value（ $[A]_{0}$ ）in an nth－order reaction with a rate constant（k）．
（15\％）

