1．A liquid flows through a capillary with an inside radius $\mathrm{R}=10^{-3} \mathrm{~m}$ and a length $\mathrm{L}=0.4 \mathrm{~m}$ ．The viscosity of the liquid is $1.5 \times 10^{-3} \mathrm{~Pa} \cdot \mathrm{~s}$ ．The velocity distribution inside the capillary is $\mathrm{v}=0.3\left[1-\left(\frac{r}{\mathrm{R}}\right)^{2}\right] \mathrm{m} / \mathrm{s}, \quad$ where r is the radial coordinate．
（a）What is the volumetric flow rate？（ 10% ）
（b）What is the pressure drop Δp across the capillary during flow？（10\％） Hint：the flux of r－momentum in the flow direction $\tau=\frac{\Delta p}{2 \mathrm{~L}} r$

2．An oil with heat capacity $\mathrm{c}_{\mathrm{p}}=2.5 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$ is flowing through a double－pipe heat exchanger at a rate of $7500 \mathrm{~kg} / \mathrm{h}$ and is to be cooled from 373 K to 343 K ．Cooling water（ $\mathrm{c}_{\mathrm{p}}=4.187 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$ ）entering at 298 K and flowing counterflow at a rate of $3500 \mathrm{~kg} / \mathrm{h}$ is available．
（a）Calculate the outlet temperature of the cooling water（5\％）
（b）Calculate the overall heat transfer coefficient in $\mathrm{W} / \mathrm{m}^{2} \cdot \mathrm{~K}$ if the heat－transfer area inside the heat exchanger is $6.5 \mathrm{~m}^{2}(10 \%)$

3．A Newtonian fluid is confined between two parallel infinite plates with a distance B apart．The lower plate is moving leftward at a constant velocity v_{0} and the upper plate is moving rightward at a constant velocity $2 v_{0}$ ．The pressure gradient in the flow is $\frac{P_{0}-P_{L}}{L}$ Assuming that the flow is steady－state and laminar and gravity is negligible，find the velocity distribution（15\％）

19國立雲林科技大學

系所：化材系
101 學年度碩士班暨碩士在職專班招生考試試題 科目：單元操作與輸送現象

4．利用逆流式套管熱交換器（countercurrent double－pipe heat exchanger），以 $105^{\circ} \mathrm{C}$凝結水蒸汽（condensing steam）將空氣自 $30^{\circ} \mathrm{C}$ 加熱至 $80^{\circ} \mathrm{C}$ 。假設主要熱傳阻力控制在空氣熱對流部份。已知空氣熱對流的熱傳係數（h）經驗式為 $N u=0.023 \mathrm{Re}^{0.8} \mathrm{Pr}^{0.4}$ ，式中 Nu 為納瑟數（Nusselt number），Re 為雷諾數 （Reynolds number），Pr 為普蘭多數（Prandtl number）。若改用 $120^{\circ} \mathrm{C}$ 凝結水蒸汽加熱空氣同樣自 $30^{\circ} \mathrm{C}$ 加熱至 $80^{\circ} \mathrm{C}$ ，試問所加熱空氣的流量為原所加熱空氣流量的多少倍？（15 分）

5．有一液珠懸浮於靜止不動氣體中，液珠成分為 A ，氣體為 A 和 B 。若 B 不溶於 A ，而 A 自液珠表面蒸發，然後擴散至氣相中。因液珠很小可視為球狀，假設液體之蒸發速率緩慢，液珠的半徑 R 可視為不變。試推導出計算液珠蒸發速率的方程式。（20 分）

6．在 298 K 及 1 atm 下，一填料塔（packing tower）中利用有機胺溶液吸收二氧化碳。氣體進人時含 $1.26 \mathrm{~mol} \%$ 的二氧化碳，離去時含 $0.04 \mathrm{~mol} \%$ 。假設在操作條件範圍，二氧化碳與有機胺溶液間平衡關係遵守亨利定律（Henry＇s law），亦即 $\mathrm{y}_{\mathrm{CO} 2}=1.575 \mathrm{x}_{\mathrm{CO} 2}$ 。氣體流速為 $2.3 \mathrm{~g}-\mathrm{mol} / \mathrm{s}$ ，液體流速為 $4.8 \mathrm{~g}-\mathrm{mol} / \mathrm{s}$ 。已知填料塔直徑為 40 cm ，總體質傳係數（overall mass transfer coefficient）與單位體積的表面積的乘積 $\mathrm{K}_{\mathrm{y}} \mathrm{a}$ 為 $5.0 \times 10^{-5} \mathrm{~mol} /\left(\mathrm{cm}^{3}-\mathrm{s}\right)$ ，試計算填料塔高為多少 m ？（15 分）

