1．Nickel has a face－centered cubic unit cell（4 atoms inside）．The density of nickel is $6.84 \mathrm{~g} / \mathrm{cm}^{3}$ ．Calculate a value for the atomic radius of nickel．（ $\mathrm{Ni}=58.69 \mathrm{~g} / \mathrm{mol}$ ）

2．An excited hydrogen atom emits light with a frequency of $1.141 \times 10^{-4} \mathrm{~Hz}$ to reach the energy level for which $n=4$ ．If you want to calculate what principal quantum level did the electron begin，please write down the calculating processes．（You should not show the final answer）
Hint：$\Delta \mathrm{E}=\mathrm{h} v$

$$
\Delta E=-2.178 \times 10^{-18}\left(\frac{1}{\frac{1}{n_{\mathrm{f}}^{2}}}-\frac{1}{n_{i}^{2}}\right)
$$

3．For each of the following molecules，write the Lewis structure，predict the molecular structure（including bond angels），and give the excepted hybrid orbitals on the central atoms．（a）． $\mathrm{SF}_{2} ;$（b）． $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$

4．An iron ore sample contains $\mathrm{Fe}_{2} \mathrm{O}_{3}$ plus other impurities．A 652－g sample of impure iron ore is heated with excess carbon，producing 343 g of pure iron by the following reaction：$(\mathrm{Fe}=55.85)$

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{C}(\mathrm{~s}) \rightarrow 2 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{~g})
$$

What is the mass percent of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ in the impure iron ore sample？Assume that $\mathrm{Fe}_{2} \mathrm{O}_{3}$ is the only source of iron and that the reactions is 100% efficient．

國 立 雲 林 科 技 大 學系所：擐安系 101 學年度碩士班暨碩士在職專班招生考試試題科目：化學

5．The logarithmic values of a pure substance＇s vapor pressure are inversely proportional to their corresponding temperatures．（a）List the equation that can describe this relationship．（b） Calculate the vapor pressure of water at $50^{\circ} \mathrm{C}$ if the vapor pressure of water at $25^{\circ} \mathrm{C}$ is 23.8 torr and the heat of vaporization of water at $25^{\circ} \mathrm{C}$ is $43.9 \mathrm{~kJ} / \mathrm{mol}$ ．

$$
\text { Cwhere: } e^{-1.37}=0.254
$$

6．A certain first－order reaction has a half－life of 20.0 minutes．（a）Calculate the rate constant for this reaction．（b）How much time is required for this reaction to be 75% complete？（where： $\ln (2)=0.693$ ）

7．（a）Calculate the percent dissociation of acetic acid $\left(\mathrm{Ka}=1.8 \times 10^{-5}\right)$ in $1.00 \mathrm{M} \quad \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ solutions．（b）Which solution has a higher value of percent dissociation，a 1.00 M or a 0.10 M $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ solutions？

8．Calculate the solubility of solid $\mathrm{CaF}_{2}\left(\mathrm{~K}_{\mathrm{sp}}=4.0 \times 10^{-11}\right)$ in a 0.025 M NaF solution．
\qquad

