

國立雲林科技大學

系所:環安系

101 學年度碩士班暨碩士在職專班招生考試試題

科目:流體力學(2)

1. A shaft 6.00 cm in diameter is being pushed axially through a bearing sleeve 6.02 cm in diameter and 40 cm long. The clearance, assumed uniform, is filled with oil whose properties are $v = 0.003 \,\text{m}^2/\text{s}$ and SG = 0.88. Estimate the force required to pull the shaft at a steady velocity of 0.4 m/s. (20 points)

2. The cylindrical container in Fig.1 is 20 cm in diameter and has a conical contraction at the bottom with an exit hole 3 cm in diameter. The tank contains fresh water at standard sea-level conditions. If the water surface is falling at the nearly steady rate $dh/dt \approx -0.072 \,\text{m/s}$, estimate the average velocity V out of the bottom exit. (30 points)

Fig. 1

3. A two-dimensional steady flow, the stream function can be expressed as $\psi = xy$

Find the fluid acceleration at the point (x=1, y=1).

(15 points)

- 4. A sharp flat plate with 1 m of length and 3 m of width is immersed parallel to a stream of velocity 2 m/s. Find the drag force on one side of the plate for (a) air, $\rho = 1.23 \text{ kg/m}^3$ and $\nu = 1.46 \times 10^{-5} \text{ m}^2/\text{s}$; and (b) water, $\rho = 1000 \text{ kg/m}^3$ and $\nu = 1.02 \times 10^{-6} \text{ m}^2/\text{s}$. Assuming $C_D = \frac{1.328}{\text{Re}_L^{\frac{1}{2}}}$. (15 points)
- 5. At low velocities (laminar flow), the volume flux Q through a small-bore tube is a function only of the pipe radius r, the fluid viscosity μ, and the pressure drop per unit pipe length dp/dx. Using the power-product method, rewrite the suggested relationship Q = f(r, μ, dp/dx) in dimensionless form. (20 points)