國 立 雲 林 科 技 大 學
101 學年度碩士班暨碩士在職專班招生考試試題

1．A shaft 6.00 cm in diameter is being pushed axially through a bearing sleeve 6.02 cm in diameter and 40 cm long．The clearance，assumed uniform，is filled with oil whose properties are $v=0.003 \mathrm{~m}^{2} / \mathrm{s}$ and $S G=0.88$ ．Estimate the force required to pull the shaft at a steady velocity of $0.4 \mathrm{~m} / \mathrm{s}$ ．（ 20 points）

2．The cylindrical container in Fig． 1 is 20 cm in diameter and has a conical contraction at the bottom with an exit hole 3 cm in diameter．The tank contains fresh water at standard sea－level conditions．If the water surface is falling at the nearly steady rate $d h / d t \approx-0.072 \mathrm{~m} / \mathrm{s}$ ，estimate the average velocity $V$ out of the bottom exit．（30 points）


Fig． 1
3．A two－dimensional steady flow，the stream function can be expressed as

$$
\psi=x y
$$

Find the fluid acceleration at the point $(x=1, y=1)$ ．
（15 points）

4．A sharp flat plate with 1 m of length and 3 m of width is immersed parallel to a stream of velocity $2 \mathrm{~m} / \mathrm{s}$ ．Find the drag force on one side of the plate for（a）air，$\rho=1.23 \mathrm{~kg} / \mathrm{m}^{3}$ and $v=1.46 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$ ；and（b）water，$\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$ and $v=1.02 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$ ．Assuming $C_{D}=\frac{1.328}{\operatorname{Re}_{L}^{y_{2}^{2}}}$.

5．At low velocities（laminar flow），the volume flux $Q$ through a small－bore tube is a function only of the pipe radius $r$ ，the fluid viscosity $\mu$ ，and the pressure drop per unit pipe length $d p / d x$ ．Using the power－product method，rewrite the suggested relationship $Q=$ $f(r, \mu, d p / d x)$ in dimensionless form．
（20 points）

