1．You are going to enhance a machine，and there are two possible improvements： either makes multiply instructions run five times faster than before，or make memory access instructions run two times faster than before．You repeatedly run a program that takes 10 seconds to execute．Of this time， 25% is used for multiplication， 50% for memory access instructions，and 25% for other tasks．
－What will the speedup be if you improve only multiplication？（6\％）
－What will the speedup be if you improve only memory access？（6\％）
－What will the speedup be if both improvements are made？（6\％）

2．A CPU designs with pipeline technique．For pipelined execution，assume that half of the load instructions incur the data hazards（required one clock stall），that the one－quarter of the branches have control hazards（required one clock for branch delay）．If one program has 40% loads， 15% stores， 20% branches， 5% jumps，and 20\％ALU．What is the average CPI？（14\％）

3．Table 1 shows the CPI values for different instruction classes．There are two compilers which compile the same program．Table 2 shows the results for each compiler．

Table 1

instruction class	CPI
A	1
B	4
C	2

Täble 2

Code from	Instruction counts（in millions）for each instruction class		
	A	B	C
Compiler 1	6	1	1
Compiler 2	10	1	1

If the machine＇s working frequency is 100 MHz ，please answer the following question．
（a）What is the MIPS value for compiler 1 and compiler 2？（6\％）
（b）What is the CPI value for compiler 1 and compiler $2 ?(6 \%)$
（c）What is the CPU time for compiler 1 and compiler 2 ？（6\％）
4．Show the IEEE 754 binary representation of the number of $-0.75_{\text {ten }}$ in single precision．（10\％）

5．How many total bits are required for a directed－mapped cache with 16 KB of data and 4 －word blocks，assuming a 32 －bit address？（ 10% ）

6．Consider a cache with 64 blocks and a block size of 16 bytes．To what block number does byte address 1200 map？（10\％）

7．For the instruction sub $\$ t 2, \$ s 0, \$ t 3$ ，how many clock cycles should it have to waste after a forwarding path（shown in the figure）is added？（10\％）

Program execution order （in instructions）
add \＄so，\＄t0，\＄11

8

I－MEM	Add	Mux	ALU	Regs	D－Mem	Sign－extend	Shift－left－2
400ps	100 ps	30 ps	120 ps	200 ps	350 ps	20 ps	Ops

（a）What is the clock cycle if the only type of instructions we need to support are ALU instructions（add，and，etc．）？（5\％）
（b）What is the clock cycle time if we only had to support 1 w instructions？（5\％）

