本試題共九題，共計 100 分，請依題號作答並將答案寫在答案卷上，違者不予計分。

1．(20%) Let P_{n} denote the s et of real polynomial functions of degree $\leq n$ ．
（a）(10%) Show that the set $\left\{x^{2}+1,3 x-1,-4 x+1\right\}$ is linearl y independent in P_{2} ．
（b）(10%) Show that the set $\{x+1, x-1,-x+5\}$ is linearl y dependent in P_{1} ．
2．（ 10% ）Find the reduced echelon form for each of the following matrices．Use the echelon form to determine a basis for the row space，and the rank of each matrix．
（a）$\quad(5 \%)\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & -1 & -1 \\ 3 & 4 & 7\end{array}\right]$
（b）$(5 \%)\left[\begin{array}{cccc}1 & 1 & 0 & -1 \\ 2 & 1 & 0 & 0 \\ 3 & 2 & 0 & -1 \\ -1 & 0 & 1 & 1\end{array}\right]$
3．(20%) Let $T: U \rightarrow V$ be a linear transformation．Let T be defined relative to bases $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ and $\left\{\mathbf{v}_{1}, v_{2}\right\}$ of U and V as follows：

$$
T\left(\mathbf{u}_{1}\right)=2 \mathbf{v}_{1}+3 \mathbf{v}_{2}, \quad T\left(\mathbf{u}_{2}\right)=4 \mathbf{v}_{1}-\mathbf{v}_{2} .
$$

（a）（ 10% ）Find the matrix of T with respect to these b ases．
（b）(10%) Use this matrix to find the image of the vector $\mathbf{u}=2 \mathbf{u}_{1}+5 \mathbf{u}_{2}$ ．
4．（ 8% ）Please answer：
（a）（4\％）Determine the matrix of coefficients and augmented matrix of each following system of equation．

$$
\left\{\begin{array}{c}
x_{1}+2 x_{2}+3 x_{3}=14 \\
2 x_{1}+5 x_{2}+8 x_{3}=36 \\
x_{1}-x_{2}=-4
\end{array}\right.
$$

（b）（4\％）Solve the system using the method of Gauss－Jordan elimination with matrices．
5．（ 6% ）Find the image of the triangle having the following vertices $\mathrm{A}(1,2), \mathrm{B}(2,8), \mathrm{C}(3,2)$ under the rotation of $\pi / 2$ with respective to point $\mathrm{P}(5,4)$ ．

6．（ 12% ）Evaluate the determinants of the following matrices．
（a）$\left[\begin{array}{ccc}0 & 3 & 2 \\ 1 & 5 & 7 \\ -2 & -6 & -1\end{array}\right]$
（b）$\left[\begin{array}{cccc}1 & -2 & 3 & 0 \\ 4 & 0 & 5 & 0 \\ 7 & -3 & 8 & 4 \\ -3 & 0 & 4 & 0\end{array}\right]$
（c）$\left[\begin{array}{cccc}2 & 5 & 1 & 0 \\ 0 & 3 & 2 & -7 \\ 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & -2\end{array}\right]$
（d）$\left[\begin{array}{ccc}1 & -2 & 3 \\ 7 & 5 & 4 \\ 0 & 0 & 0\end{array}\right]$
7．(10%) Consider the matrix $A=\left[\begin{array}{lll}0 & 0 & 3 \\ 1 & 0 & 1 \\ 0 & 1 & 3\end{array}\right]$ ．
（a）（5\％）Find its eigenvalues．
（b）（5\％）Find the corresponding normalized eigenvectors．
8．（ 8% ）If $A^{-1}=\left[\begin{array}{cc}3 & 4 \\ -1 & -1\end{array}\right]$ ；find A ．
9．(6%) Determine whether the following matrices are singular．Give the reason．
（a）$\left[\begin{array}{ccc}1 & 5 & 5 \\ 0 & -2 & -2 \\ 3 & 1 & 1\end{array}\right]$
（b）$\left[\begin{array}{ccc}7 & 9 & 0 \\ -2 & 3 & 0 \\ 4 & 5 & 0\end{array}\right]$

