（1）Determine the values of k such that the following equations $\left\{\begin{array}{l}4 x+k y=6 \\ k x+y=-3\end{array}\right.$
（i）the equation has no solution．
（ii）the equation has exact one solution．
（iii）the equation has an infinite number of solutions．
（2）Determine the polynomial $p(x)=a_{0}+a_{1} x+a_{2} x^{2}$ whose graph passes the given points $(1,2),(2,0),(3,4)$ ．
（3）Solve the following linear system $\mathbf{A x}=\mathbf{b}$ with $L U$－Factorization of

$$
\begin{aligned}
2 x_{1}+x_{2} & =1 \\
x_{2}-x_{3} & =2 \\
-2 x_{1}+x_{2}+x_{3} & =-6
\end{aligned}
$$

（i）Find the $L U$－Factorization of the coefficient matrix \mathbf{A} ，where diagonal elements of L are 1.
（ii）From（i），solving \mathbf{y} of the lower triangular system $L \mathbf{y}=\mathbf{b}$ ，where $\mathbf{y}=U \mathbf{x}$ ．
（iii）From（i）and（ii），solving \mathbf{x} of the upper triangular system $U \mathbf{x}=\mathbf{y}$ ．
（4）Express the vector \mathbf{b} as a linear combination of the columns of \mathbf{A} ．

$$
\mathbf{A}=\left[\begin{array}{rrr}
1 & 1 & -5 \\
1 & 0 & -1 \\
2 & -1 & -1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
3 \\
1 \\
0
\end{array}\right] .
$$

（5）Let \boldsymbol{T} be the triangle with vertices at $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ ．Show that

$$
\{\text { area of } T\}=\frac{1}{2}\left|\operatorname{det}\left[\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right]\right|
$$

（6）Find the area of the region E bounded by the ellipse whose equation is

$$
\frac{x^{2}}{4}+\frac{y^{2}}{9}=1 .
$$

（7）（a）Find rank A and dim Null A．
（b）Find bases for the row space，the column space，and the null space of the matrix \mathbf{A} ．

$$
\mathbf{A}=\left[\begin{array}{ccccc}
2 & -3 & 6 & 2 & 5 \\
-2 & 3 & -3 & -3 & -4 \\
4 & -6 & 9 & 5 & 9 \\
-2 & 3 & 3 & -4 & 1
\end{array}\right]
$$

（8）Compute \mathbf{A}^{10} where $\mathbf{A}=\left[\begin{array}{ll}4 & -3 \\ 2 & -1\end{array}\right]$ ．（Hint：utilize $\mathbf{A}=\mathbf{P D P}^{-1}$ ）

