Prob． 1 （30\％）
The model of a motor with input voltage $f(\mathrm{t})$ and output angular velocity $\mathrm{y}(\mathrm{t})$ is given as following， $\mathrm{y}^{\prime}+\mathrm{y}=f(\mathrm{t})$ ，with $\mathrm{y}(0)=0$ where $f(\mathrm{t})$ is given in figure 1.
（1）Please solve $y(t)$ by Laplace transform．（15\％）
（2）Please solve $y(t)$ by convolution integral (15%) defined as $\int_{0}^{1} g(t-\tau) f(\tau) d \tau$ ．

Where $g(\mathrm{t})$ is the unit impulse response， that is the solution of $y^{\prime}+y=\delta(t)$
 with the unit impulse function（Dirac delta function）$\delta(t)$ ．

Prob． 2 （20\％）
Given an equations as below $y^{\prime}+2 y=2 \cos (2 x) \sin (4 x)$ please solve its particular solution $y_{p}(x)$ ．

3．Consider the system of linear equations：

$$
\begin{array}{r}
2 X_{1}+X_{2}-11 X_{3}=-6 \\
-5 X_{1}+X_{2}+9 X_{3}=12 \\
X_{1}+X_{2}+14 X_{3}=-5
\end{array}
$$

The system can be written in matrix form as $\mathrm{AX}=\mathrm{B}$ ．Please find（1） A, B, （2） the Rank of matrix A by Gauss elimination，（3） $\operatorname{det}(A)$ ，（4）A^{-1} ，（5）$A^{-1} B$ ，（6）X ． （25\％）

4．Solve $\frac{\partial u}{\partial t}=9 \frac{\partial^{2} u}{\partial x^{2}}$ for $0<x<3, t>0$
with $u(0, t)=u(3, t)=0$ for $t \geq 0 ; u(x, 0)=50$ for $0 \leq x \leq 3 \quad(25 \%)$

