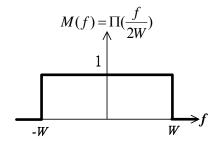
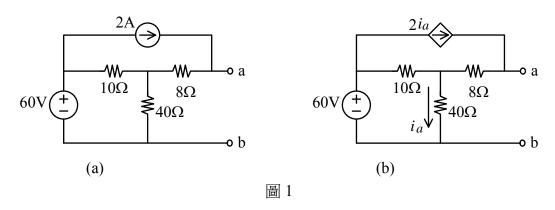

國立虎尾科技大學 101 學年度研究所 (碩士班)考試入學試題

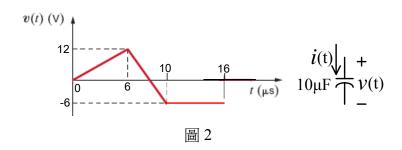

所別: 航空與電子科技研究所乙組

科目:專業科目(電子學、電路學、控制系統、通訊系統)

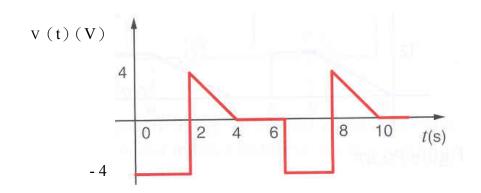
注意事項:

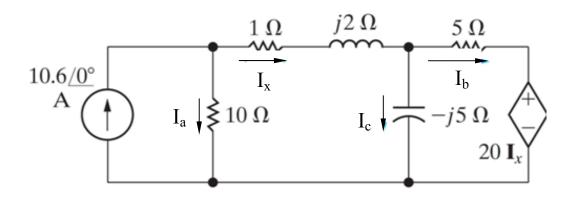
- (1) 共十六大題,任選其中四大題作答,每大題二十五分,共一百分。
- (2)請於答案卷上註明選答題號,若未註明選答題號及超過規定題數時,謹採計作答順序較前 之題目計分。
- 1.Let y(t) = h(t)*d(t-1/1000) + L(t)*d(t+1/1000), where h(t) is an ideal low pass filter with 2kHz bandwidth and d(t) is a delta function. The "*" sign means convolution operation. Find the two-side spectrum of y(t) and sketch it.
- 2.Let h(t) is the impulse response of a LTI system. In real world, how we to get h(t) of an unknown system? Why h(t) is so useful for us to analyze a unknown system?
- 3. The message signal, whose spectrum is $M(f) = \Pi(\frac{f}{2W})$, is passed through the system shown below, where $\Pi(f) = rect(f)$ is the rectangular function.



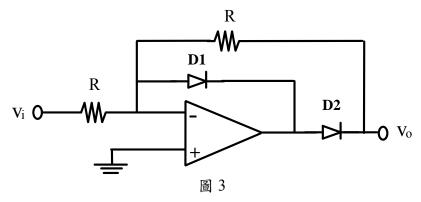

Assuming that $f_0 >> W$, the bandpass filter has a bandwidth of 2W centered at f_0 , and the lowpass filter has a bandwidth of $W \circ$ Sketch the spectrum of the signals $x(t), y_1(t), y_2(t), y_3(t)$ and $y_4(t) \circ$

4.An FM modulator has the output: $x_c(t) = 50\cos[\omega_c t + 2\pi k_f \int_0^t m(\tau)d\tau]$, where the frequency sensitivity is $k_f = 20$ Hz/V, and the input message signal is $m(t) = 2\Pi(\frac{t-1}{2}) - \Pi(\frac{t-4}{2}) + \Pi(\frac{t-7}{4})$; $\Pi(t) \equiv rect(t)$ is the rectangular function \circ


- (a) Sketch the **frequency deviation** of the FM signal, $\Delta f(t)$ •
- (b) Sketch the **phase deviation** of the FM signal, $\Delta \phi(t)$ \circ
- (c) Determine the **peak frequency deviation** of the FM signal, Δf (in Hz) \circ
- (d) Determine the **peak phase deviation** of the FM signal, $\Delta \phi$ (in radians) \circ
- 5. (a)如圖 1(a)電路,計算出此電路在 a-b 端的戴維寧等效電阻 R_m 、等效電壓 V_m 以及畫出其戴維寧等效電路。(b)如圖 1(b)電路,計算出此電路在 a-b 端的戴維寧等效電阻 R_m 、等效電壓 V_m 以及畫出其戴維寧等效電路。


6. 有 $10\,\mu$ F 電容,其電容端電壓波形如圖 $2\,$ 所示,求出(a)在 $0 \le t \le 16\,\mu$ s, $10\,\mu$ F 電容的電流 i(t),(b) t = $6\,\mu$ s 時,電容儲存的能量有多少。

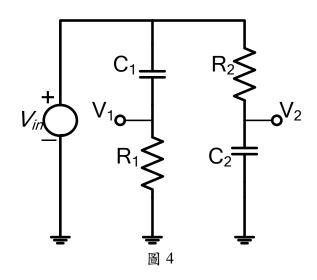
7. 試求電壓的均方根值(Vrms)為何?


8. 電流源的相量值假設為 Imax=10.6A,試用節點電壓法求取電流 I_a , I_b , and I_c 的有效值 (rms). (可以改用其他方法)

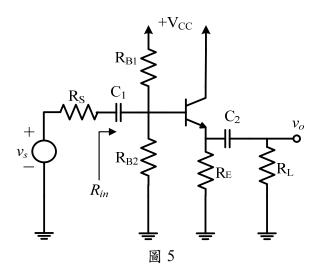
- $9.\ V_1$ 、 V_2 、 V_3 、 V_4 為輸入電壓, V_o 輸出電壓,以運算放大器來設計以下方程式之電路,並畫出其電路圖
- (a) $V_0 = 2V_1 2V_2$
- (b) $V_o = -3V_1 4V_2 + 6V_3 + 5V_4$

10.如圖 3 所示之電路,圖中為理想放大器及導通電壓為 0.7V 的二極體,試求

- (a) 畫出輸出 Vo對輸入 Vi 之轉移曲線
- (b) 若輸入 V_i 為振幅 5V 之弦波,畫出輸出 V_o 之波形
- (c) 若放大器之輸出飽和電壓為 $\pm 12V$,若輸入電壓 V_i 為+5V 和-5V 時,求輸出電壓 V_o 各為多少?

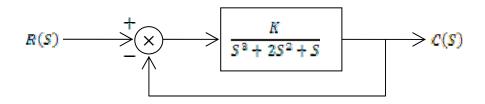


11. 如圖 4 所示,試依據此電路回答以下問題:


(a) 求電壓 V_1 與 V_2 之相位差 $\angle V_1 - \angle V_2$?

(b) 假設
$$R_1C_1=\frac{\sqrt{3}}{\omega}$$
 與 $R_2C_2=\frac{1}{\omega}$,則相位差 $\angle V_1-\angle V_2$ 為何?

(c) 試問 V_1 與 V_2 之相位差為 90° 之條件為何?



- 12. 如圖 5 所示為共集極放大器之基本電路,試依據此電路回答以下問題:
 - (a) 此電路的主要功能是作為緩衝放大器,其所具備的三大特性為何?故又稱為什麼?
 - (b) 試由電晶體小訊號 r 參數的一階模型,其中電流增益為 eta 且射極電阻為 $oldsymbol{r}_e$,求輸入電阻 R_{in} ?
 - (c) 另求小訊號電壓增益 $\frac{v_o}{v_c}$?

- 13. Given a compensator $G(S) = \frac{5S + 0.45}{S + 0.05}$
- (a) Find the DC gain and high-frequency gain of the compensator in decibel (dB);
- (b) Explain that the compensator is phase-lag.
- 14. Given the transfer function of a dynamic system: $G(S) = \frac{2}{S^2 + 3S + 2}$
- (a) write the phase-variable canonical form for this system (hint: $\dot{X} = AX + BU, Y = CX$)
- (b) design a state-feedback regulator u = -KX to make the poles of the close-loop system on -2 and -5 respectively.

15. 下圖之回授系統中,求使系統穩定之K值範圍。

16. 一線性系統方程式如下:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \quad \forall \quad X \; - \; \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

求 $K = [k1 \quad k2]$,u = -KX,使得閉迴路系統特徵根均為-2。