國立新竹教育大學 101 學年度碩、博士班招生考試試題

所別:應用數學系碩士班

科目:微積分(本科總分150分,含初等微積分、高等微積分)

※ 請橫書作答

1. Find the following limit

(a)
$$\lim_{h\to 0} \frac{\sqrt{1+h}-1}{h}$$
 (b) $\lim_{x\to \infty} \left(e^{x}+x\right)^{\frac{1}{x}}$ (12 points)

2. In the following, find $\frac{dy}{dx}$ (18 points)

(a)
$$y \sin x^2 = x \sin y^2$$
 (b) $y = (\sin x)^{\ln x}$ (c) $y = \int_{\tan x}^{x^2} \frac{1}{\sqrt{2 + t^4}} dt$

3. Evaluate the following integral (20 points)

(a)
$$\int_{e}^{e^4} \frac{1}{x\sqrt{\ln x}} dx$$
 (b) $\int e^x \sqrt{1 + e^x} dx$ (c) $\int \frac{\sin^3 x}{\cos x} dx$ (d) $\int_{0}^{3} \frac{1}{x^2 - 6x + 5} dx$

- 4. The region D enclosed by the curves y = x and $y = x^2$ is rotated about the line y = 2. Find the volume of the resulting solid. (10 points)
- 5. Determine whether the series is convergent or divergent. (15 points)

(a)
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$$
 (b)
$$\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^n$$
 (C)
$$\sum_{n=1}^{\infty} (-1)^n \sin\left(\frac{\pi}{n}\right)$$

- 6. Suppose A, B are open sets in \mathbb{R} and F, G are closed sets in \mathbb{R} .
 - (a) Prove that $A \cup B$ and $A \cap B$ are open. (10 points)
 - (b) Prove that $F \cap G$ is closed. (5 points)

- 7. Suppose $\{x_n\}$ is a sequence of real numbers such that
 - (a) $|x_n x_{n+1}| \le \frac{1}{n+5}$ prove or disprove that $\{x_n\}$ converges. (10 points)
 - (b) $|x_n x_{n+1}| \le \frac{1}{n^2}$ prove or disprove that $\{x_n\}$ converges. (10 points)
- 8. (a) Find an open cover of [0,1) with no subcover in \mathbb{R} . (10 points)
 - (b) Is $\left\{0, 1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n} \dots\right\}$ compact in \mathbb{R} ? Justify your answer. (10 points)
- 9. (a) Let $\{A_k\}$ be a sequence of compact nonempty sets in \mathbb{R} such that $A_{k+1} \subset A_k$ for all $k \in \mathbb{N}$. Prove that $\bigcap_{k \in \mathbb{N}} A_k \neq \emptyset$. (10 points)
 - (b) Find an example of $\{A_k\}$ in \mathbb{R} such that $A_{k+1} \subset A_k$ for all $k \in \mathbb{N}$ but $\bigcap_{k \in \mathbb{N}} A_k = \phi$. (10 points)