國立彰化師範大學 101 學年度碩士班招生考試試題

系所: 電子工程學系 組別: 甲、乙組 科目: 電子學 ☆☆請在答案卷上作答☆☆ 共2頁,第1頁

3. (20%) For the common-base amplifier shown in Fig. 3, replace the BJT with its small-signal T model (without r_o) and find expressions for R_{in} , R_o , and $A_{vs} = v_o / v_{sig}$.

國立彰化師範大學 101 學年度碩士班招生考試試題

系所: <u>電子工程學系</u>	組別: <u>甲、乙組</u>	科目: <u>電子學</u>
☆☆請在答案卷上作答☆☆		共2頁,第2頁

4. (15%) The amplifier in Fig. 4 is biased to operate at $I_D = 0.2$ mA and $g_m = 0.5$ mA/V. Neglecting r_o , find the midband gain. Find the value of C_s that places f_L at 20 Hz.

- 5. (15%) For a particular amplifier connected in a feedback loop in which the output current is sampled and input current is mixed, measurement of the output resistance after and before the loop is connected shows a change by a factor of 80. Is the output resistance with feedback higher or lower? Is the input resistance with feedback higher or lower? What is the value of the loop gain $A\beta$? If $R_{if} = 5 \text{ k}\Omega$ and $R_{of} = 100 \text{ k}\Omega$, what is R_i and R_o without feedback?
- 6. The differential amplifier circuit of Fig. 5 utilizes a resistor connected to the negative power supply to establish the bias current I.
 - (1) (10%) For $v_{B1} = v_{id}/2 + 0.7$ and $v_{B2} = -v_{id}/2 + 0.7$, where v_{id} is a small signal with zero average, find the magnitude of the differential gain, $|v_o/v_{id}|$.
 - (2) (5%) For $v_{B1} = v_{B2} = v_{icm} + 0.7$, where v_{icm} is a small signal with zero average, find the magnitude of the common mode gain, $|v_o/v_{icm}|$.
 - (3) (5%) Find the common-mode rejection ratio (CMRR).

