國立彰化師範大學 101 學年度碩士班招生考試試題

系所: 科學教育研究所 組別: <u>甲組</u> 科目: 普通數學(含微積分及線性代數)

☆☆請在答案卷上作答☆☆

共1頁,第1頁

1. (a) (10 points) State the Mean-Value Theorem for a real value function f defined on all real numbers.

- (b) (10 points) Show that if f is differentiable on (a, b) and $f'(x) \neq 0$ for all $x \in (a, b)$, then the equation f(x) = 0 has at most one real solution in (a, b).
- 2. (15 points) Find the enclosed area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 3. (a) (5 points) Taylor expand $\sin x$ at x = 0.
 - (b) (5 points) Show that the Taylor series you derived is convergent.
 - (c) (5 points) Use this Taylor series to show that $\lim_{x\to 0} \frac{\sin x}{x} = 1$.
- 4. (10 points) Solve the system of linear equations:

$$\begin{cases} x_1 + x_2 + x_3 + x_4 &= 1\\ 2x_1 + x_2 + x_3 + x_4 &= -2\\ x_1 + 2x_2 + x_3 - x_4 &= 3 \end{cases}$$

- 5. Consider the polynomial space of degree 2: $P_2(\mathbf{R}) = \{a + bx + cx^2 : a, b, c \in \mathbf{R}\}$ where \mathbf{R} denote the set of real numbers.
 - (a) (10 points) Find a basis $\beta = \{f_1, f_2, f_3\}$ for $P_2(\mathbf{R})$ such that

$$f_i(j) = \begin{cases} 0 & , & \text{if } i \neq j \\ 1 & , & \text{if } i = j \end{cases},$$

for $i, j \in \{1, 2, 3\}$.

- (b) (5 points) Find the coordinate vector of $p(x) = 2x^2 x + 3$ corresponding to β , i.e. $[p(x)]_{\beta}$.
- 6. (15 points) Let

$$A = \left(\begin{array}{rrr} 0 & 3 & 1 \\ 2 & 1 & 1 \\ -2 & 3 & 3 \end{array}\right).$$

Find a matrix Q such that $Q^{-1}AQ$ is a diagonal matrix.

7. (10 points) Find an orthonormal basis β for $P_2(\mathbf{R})$ with the inner product

$$< f, g > = \int_0^1 f(t)g(t)dt.$$