國立高雄師範大學 101 學年度碩士班招生考試試題

系所別:物理學系

科 目:近代物理(全一頁)

※注意:1.作答時請將試題題號及答案依序寫在答案卷上,於本試題上作答者,不予計分。 2.請以藍、黑色鋼筆或原子筆作答,以鉛筆或其他顏色作答之部份,該題不予計分。

- 1. Derive the Doppler effect for light. (10%)
- 2. A wave of wavelength λ passes through a slit and arrives a screen that is at a distance L away from the slit. Find the width of the slit such that we can get the narrowest image on the screen. (20%)
- 3. A mass m is bound by a potential well $V(x) = -\gamma \delta(x)$. Find the energy. (10%)
- 4. A hydrogen atom is at the ground state. Solve the Schrödinger equation and find the bound energy of the electron. (20%)
- 5. (1) Use $p = \gamma m_0 v$ and $E = \gamma m_0 c^2$ to prove that $E^2 = p^2 c^2 + m_0^2 c^4$ where $\gamma = (1 - v^2 / c^2)^{-1/2}$. (10%)
 - (2) A particle of rest mass m_0 moves at speed u along the +x axis in frame S. the linear momentum of the particle is $p_x = \gamma(u)m_0u$ and its energy is $E = \gamma(u)m_0c^2$ where $\gamma(u) = (1-u^2/c^2)^{-1/2}$. Frame S' moves at velocity v along the +x axis of frame S. Show that the linear momentum and energy in frame S' are related to the values in S according to $E' = \gamma(E vp_x)$; $p_x' = \gamma(p_x vE/c^2)$ where $\gamma = (1-v^2/c^2)^{-1/2}$. [Hint: The speed of the particle in frame S' is $u' = (u-v)/(1-uv/c^2)$.] (20%)
- 6. Write down Schrodinger's wave equation for wave function $\Psi(\vec{x},t)$ and explain the meaning of it. (10%)