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1. Use the complex integral to evaluate I dx. (109 )

= X=2i

2. Use Green’s theorem to evaluate (f;c x’ydx —xy*dy, C isthe boundary of the region
X*+y*<4,x>0,y>0. (10%)

. Solve the following O.D.E. (x+2)*y"—(x+1)y'+y=0. (10%)

. Solve the following problem. x*y"+y'+Ay=0,y(0)=y1)=0 (10%)
Find the eigenvalues and the orthogonal eigenvectors of the matrix. (1094 )
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6. The following are integral form of Maxwell’s equations in vacuum. Use divergence theorem
or Stokes’ theorem to derive the differential form of Maxwell’s equations in vacuum. (259 )

The divergence theorem of a vector function F : j':f AdA = mv Fdv
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The Stokes’ theorem of a vector function F : :f F.d/= H V x F -AdA
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7. Find the eigenvalues and the corresponding normalized eigenvectors of the following matrix
A and find the unitary transformation matrix U which makes B =U AU diagonal. (25% )

a o0 0
A=[0 0 —ia| where a isareal constant.
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