國立高雄師範大學 101 學年度碩士班招生考試試題

系所別:數學系

科 目:高等微積分

※注意:1.作答時請將試題題號及答案依序寫在答案卷上,於本試題上作答者,不予計分。
2.請以藍、黑色鋼筆或原子筆作答,以鉛筆或其他顏色作答之部份,該題不予計分。

1. Evaluate the following integrals.

(A)
$$\int_0^1 \int_{\sqrt{y}}^1 \sqrt{x^3 + 1} \ dx \ dy$$
. (7%)

(B)
$$\int_0^{\sqrt{2}} \int_y^{\sqrt{4-y^2}} \frac{1}{1+x^2+y^2} dx dy$$
. (7%)

- 2. (A) Evaluate the limit $f(x) = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{x(1-x)}{k+(n-k)x}$, $x \in [0,1]$. (10%)
 - (B) Find the extreme values of f(x) on [0,1]. (5%)
- 3. Label each statement as true or false. If a statement is true, prove it. If not, give reason of why it is false.
 - (A) $f(x) = x^2$ is uniformly continuous on $(-\infty, \infty)$. (7%)
 - (B) If a function $f:[a,b] \to R$ is Riemann integrable, then there exists

some point
$$c \in [a,b]$$
 such that $\int_a^c f(x) dx = \int_c^b f(x) dx$. (7%)

(C) If
$$\sum a_k$$
 converges, then $\sum (a_k)^2$ converges. (7%)

4. Let $E = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$ be a set in \mathbb{R}^2 . Prove that the function $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 1 & x \in E \\ 0 & \text{otherwise} \end{cases}$$

is integrable on [0,1] and evaluate the value $\int_0^1 f(x) dx$. (10%)

(背面有題)

系所別:數學系

科 目:高等微積分

- 5. If $\sum_{k=1}^{\infty} |a_k|$ converges, prove that $\sum_{k=1}^{\infty} \frac{|a_k|}{k^p}$ converges for all $p \ge 0$. (10%)
- 6. Suppose that b > a > 0. Prove that $\lim_{n \to \infty} \int_a^b \left(1 + \frac{x}{n}\right)^n e^{-x} dx = b a$. (10%)
- 7. Find a closed form for each of the following series and the largest set on which this formula is valid. (10%)

(A)
$$\sum_{k=1}^{\infty} kx^{k-2}$$
; (B) $\sum_{k=1}^{\infty} \frac{x^{3k}}{k+1}$; (C) $\sum_{k=1}^{\infty} \frac{2k}{k+1} (1-x)^k$.

8. Prove that the directional derivatives of

$$f(x) = \begin{cases} \frac{x^2 y}{x^4 + y^2} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases}$$

exist at (0,0) in all directions u, but f is neither continuous nor differentiable at (0,0). (10%)