國立高雄師範大學 101 學年度碩士班招生考試試題

系所別：數學系

科 目：線性代數

※注意：1．作答時埥将試题題號及答案依序寫在答案卷上，於本試题上作答者，不予計分。

 2．請以蓝－黑色锏筆或原子筆作答，以铅筆或其他顔色作答之部份，該題不予計分。1．Let V be a vector space over the scalar field F ，and let $\left\{W_{\lambda}\right\}_{\lambda \in \Lambda}$ be any collection of subspaces of V ．Prove that $W=\bigcap_{\lambda \in \Lambda} W_{\lambda}$ is a subspace of $V .(15 \%)$

2．Let V be a vector space over the scalar field F ，and let S be a subset of V ．The subspace spanned by S is defined to be the intersection of all subspaces of V which contain S ．In this case，we also write span (S) to denote the subspace spanned by S ．Prove that the subspace $\operatorname{span}(S)$ consists of all linear combinations of vectors in S ．（15\％）

3．Let W be a subspace consisting of all $n \times n$ symmetric matrices over the scalar field F ． （ 10% ）
（i）Find the basis for W ．
（ii）Find the dimension of W ．

4．Let V be a vector space over the scalar field F ，and let U and W be two subspaces of V ．We say that V is a direct sum of U and W if and only if，for every element $x \in V$ ， there exist unique elements $u \in U$ and $w \in W$ such that $x=u+w$ ．In this case，we write $V=U \oplus W$ ．Now，we assume that V is a finite－dimensional vector space over the scalar field F ，and let U and W be two subspaces of V ．Suppose that $V=U \oplus W$ ．
Prove $\operatorname{dim}(V)=\operatorname{dim}(U)+\operatorname{dim}(W) . \quad(10 \%)$

5．Let $S=\left\{(x, y, z) \in \mathbb{R}^{3}: 5 x-y=3 z\right\}$ ．
（a）Show that S is a vector space．（ 4% ）
（b）Find a basis for S ．（4\％）

6．Let V and W be vector spaces over a field F with zero vectors θ_{V} and θ_{W} ，respectively． If $\operatorname{dim}(V)<\infty$ and $T: V \rightarrow W$ is a linear transformation，show that $\operatorname{dim}(V)=\operatorname{nullity}(T)+\operatorname{rank}(T) . \quad(15 \%)$

系所別：數學系

科 目：線性代數

7．Let $f: \mathbb{R}^{\mathbf{3}} \rightarrow \mathbb{R}$ be a quadratic form defined by

$$
f(x, y, z)=11 x^{2}+5 y^{2}+2 z^{2}+16 x y-20 y z+4 z x .
$$

Find the maximum and minimum values of f subject to the constraint $x^{2}+y^{2}+z^{2}=1$ ，and determine the values of x, y and z at which the maximum and minimum occur．（ 15% ）

8．Let W be a subspace of $\mathbb{R}^{\mathbf{n}}$ ．For any vector $v \in \mathbb{R}^{\mathbf{n}}$ ，show that the projection $\operatorname{Proj}_{W} v$ of v on W is the unique vector in W that is closest to v ．（ 12% ）

