國立臺灣師範大學 101 學年度碩士班招生考試試題

科目:工程數學(電機電子組)

適用系所:工業教育學系

注意:1.本試題共 2 頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則依規定扣分。

- 1. Solve the differential equation $x^2 \frac{dy}{dx} = \frac{1}{2}x^2 + y^2$. (10 %)
- 2. Solve the differential equation $x^2y'' + xy' + 4y = 2\sin(2\ln(x))$. (10 %)
- 3. Find the general solution of the system. (15 %)

$$\frac{dx}{dt} = x - y + 4z, \quad \frac{dy}{dt} = 3x + 2y - z, \quad \frac{dz}{dt} = 2x + y - z$$

- 4. Suppose that \mathbf{A} is a square matrix. Is it true that $\mathbf{A}\mathbf{A}^T$ and $\mathbf{A}^T\mathbf{A}$ are orthogonally diagonalizable? Justify your answer. (10 %)
- 5. Find the rank and nullity of the matrix $\mathbf{A}.(10 \%)$

$$\mathbf{A} = \begin{bmatrix} 2 & 9 & 6 & 5 & 4 \\ 6 & -1 & 4 & 1 & -2 \\ -2 & -1 & -2 & -1 & 0 \\ 4 & 8 & 7 & 5 & 3 \end{bmatrix}$$

6. Solve the initial value problem by using the Laplace transform. (15 %)

$$y'' + 4y' + 4y = g(t)$$
; $y(0) = 1$, $y'(0) = 2$

$$g(t) = \begin{cases} 2 & \text{for } 0 \le t < 2 \\ 0 & \text{for } t \ge 2 \end{cases}$$

7. Evaluate $\iint_{\mathbb{C}} 3e^{z}(z^{2}-4)^{2}(z+i)^{-2}dz$, where c: |z-1+2i|=4. (10 %)

國立臺灣師範大學 101 學年度碩士班招生考試試題

- 8. Find the orthogonal projection of the vector $\mathbf{u} = (-1,0,1,2)$ onto the subspace of R^4 spanned by the vectors $\mathbf{u}_1 = (2,1,2,-1)$, $\mathbf{u}_2 = (2,2,6,0)$, $\mathbf{u}_3 = (3,1,-1,-3)$. (10 %)
- 9. Suppose that \mathbf{u} , \mathbf{v} and \mathbf{w} are vectors in \mathbb{R}^n . Is it true that if \mathbf{u} is orthogonal to \mathbf{v} and \mathbf{w} , then \mathbf{u} is orthogonal to \mathbf{v} + \mathbf{w} ? Justify your answer: $(10 \, \text{$\beta$})$