國立臺灣師範大學 101 學年度碩士班招生考試試題

科目:電子學 適用系所:應用電子科技學系

注意:1.本試題共 4 頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則不予計分。

1. (共 10 分) An op amp having a unity-gain bandwidth of 10 MHz and a slew rate of 20 V/ μ s is connected in a unity-gain buffer, as shown in Fig. 1.

- (a) (5 %) Find the output step response $v_{out}(t)$ when a small step voltage V_P is input without causing the buffer slewing.
- (b)(5 %) Find the largest possible voltage step for which the slope of output waveform will not exceed the slew rate.

Fig. 1

- 2. (共 20 分) An emitter follower uses a transistor with β = 100 and is biased at I_C = 5 mA, as shown in Fig. 2. Bias circuit is not shown for simplicity. Assume the thermal voltage V_T = 25 mV and neglect the Early effect.
 - (a) (12 \Re) Find R_{in} , R_{out} , and $G_v \equiv v_o/v_{sig}$.
 - (b)(8 %) What is the peak amplitude of signal v_{sig} that results in v_{π} having a peak amplitude of 2 mV? Also find the resulting peak amplitude at the output.

國立臺灣師範大學 101 學年度碩士班招生考試試題

- 3. (共 20 分) The NMOS transistor in the common-source amplifier shown in Fig. 3 has threshold voltage $V_t = 0.6 \text{ V}$, $k_n' W/L = 10 \text{ mA/V}^2$, and $V_A = 100 \text{ V}$.
 - (a) (9 \Re) Neglecting the channel-length modulation, find the overdrive voltage V_{OV} , drain current I_D , and dc voltage at the drain.
 - (b) (11 \Re) Find the overall small-signal voltage gain $G_{\nu} \equiv v_o/v_{\text{sig}}$ with r_o taking into account.

4. (共 10 分) Consider an active-loaded MOS differential amplifier as that in Fig. 4 when biased at I=1 mA. Let the transistors be specified as follows: $(W/L)_n=160$, $(W/L)_p=320$, the process transconductance parameters $k'_n=0.1$ mA/V², $k'_n=0.05$ mA/V², the Early voltage $V_{An}=|V_{Ap}|=20$ V. Calculate the overdrive voltage V_{ov} of Q_1 (5 分) and the differential voltage gain v_o/v_{id} (5 分).

Fig. 4

國立臺灣師範大學 101 學年度碩士班招生考試試題

5. (共 20 分) Consider a CC-CE amplifier as that in Fig. 5 when biased at $I_1 = I_2 = 0.5$ mA. The transistors are identical and have $\beta = 100$ and $V_{BE} = 0.7$ V. Let $R_{sig} = 10$ kΩ, $R_L = 20$ kΩ, and the thermal voltage $V_T = 25$ mV. Neglecting r_o , find R_{in2} , R_{in} , the voltage gain v_o/v_{b2} , and the voltage gain v_o/v_{sig} . (各 5 分).

Fig. 5

6. (共 20 分) Referring to the general structure of the feedback amplifier of Fig. 6, answer the following questions.

(a) (5 分)Assume that the basic amplifier has the open-loop gain

$$A(s) = \frac{10^4}{(1 + \frac{s}{10^3})(1 + \frac{s}{10^4})^2}.$$

Sketch the magnitude response (in Bode plot) of the basic amplifier.

(b)(5 分) Estimate the 3-dB frequency and the unity-gain frequency of the basic

國立臺灣師範大學 101 學年度碩士班招生考試試題 amplifier.

- (c) (5 %) For the feedback factor β = 0.0001, find the gain margin and phase margin of the feedback amplifier.
- (d)(5 \Re) Find the critical value β_{cr} . (that is, the amplifier is unstable if $\beta \ge \beta_{cr}$)