國立臺灣師範大學 101 學年度碩士班招生考試試題

科目:通訊原理

適用系所:應用電子科技學系

注意:1.本試題共 2 頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則依規定扣分。

- 1. (共 10 分) Explain the following terms.
 - (a) Intersymbol interference

(2分)

(b) Random Variable/Random Process

(2分)

(c) Error propagation

(2分)

(d) Threshold effect

(2分)

(e) The sampling theorem

- (2分)
- 2. (10 分) Apply the Gram-Schmidt procedure to the set of four waveforms illustrated in Fig. 1 and determine the orthogonal signal sets.

Fig. 1.

- 3. (共 10 分) Assume that we uniformly choose a phase Θ between $-\pi/2$ and $\pi/2$ and generate a random process X(t) in the form of a sinusoid with a fixed amplitude and frequency but with a random phase Θ .
 - (a) Is the random process X(t) WSS (wide-sense stationary)? Why?
- (5分)
- (b) Let the random process Y(t) be similar to the random process X(t), but assume that Θ is uniformly distributed between 0 and 2π . Is the process WSS? Why? (5 $\frac{1}{2}$)
- 4. (共 15 分)Find the power spectral densities and average power of the following signals.
 - (a) $x_1(t) = 2\cos(20\pi t + \frac{\pi}{3})$

(5分)

(b) $x_2(t) = 3\sin(30\pi t)$

(5分)

(c) $x_3(t) = 5\sin(10\pi t - \frac{\pi}{6})$

(5分)

國立臺灣師範大學 101 學年度碩士班招生考試試題

- 5. (共 10 分) An FM modulator is followed by an ideal bandpass filter having a center frequency of 500Hz and a bandwidth of 70Hz. The gain of the filter is 1 in the passband. The unmodulated carrier is given by $10\cos(1000\pi t)$, and the message signal is $m(t) = 10\cos(20\pi t)$. The frequency deviation constant k_f is 8 Hz/V.
 - (a) Determine the peak frequency deviation and the peak phase deviation. (5 分)
 - (b) Determine the modulation index. (5 分)
- 6. $(10 \, \%)$ Determine the 8 \times 8 Hadamard matrix.
- 7. (共 10 分) Consider the precoding procedure which aims for avoiding error propagation in duobinary encoding. The data sequence is $(x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7) = (+1, -1, +1, +1, -1, +1, -1, -1)$. Assume the initial value for the sequence (α_n) , which is denoted by α_{-1} , is +1.
 - (a) Find the sequence (α_k) obtained by precoding. (5 %)
 - (b) Find the sequence (y_n) obtained from duobinary encoding of (a_k) . (5 分)
- 8. (共 10 分) Consider the linear equalizer.
 - (a) Explain its functionality. (5 分)
 - (b) Draw the architecture of a three-tap Zero-forcing linear equalizer and express how it works. (5 分)
- 9. (共 15 分) Suppose that the length of the signaling interval for both 4-QASK and the one-dimensional 4-ASK, T', is twice the length of the signaling interval for binary ASK, T(T'=2T).
 - (a) What are the information rates of the binary ASK, 4-QASK, and one-dimensional 4-ASK signals? (5 分)
 - (b) Compare the bandwidth requirements for the binary ASK, 4-QASK, and one-dimensional 4-ASK signals. (5 分)
 - (c) For a given probability of bit error, compare the energy requirements for the binary ASK, 4-QASK, and one-dimensional 4-ASK signals. (5 分)