國立臺灣師範大學 101 學年度碩士班招生考試試題

科目:線性代數與代數 適用系所:數學系

注意:1.本試題共 2 頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則不予計分。

Linear Algebra

Notations:

- 1. All vector spaces and matrices are over the real field \mathbb{R} .
- 2. For a linear transformation $T: V \to W$, $\ker(T) = \{v \in V \mid T(v) = 0\}$ and $\operatorname{image}(T) = \{T(v) \in W \mid v \in V\}$.
- 3. $\mathfrak{M}_{m\times n}$ is the vector space of all $m\times n$ matrices. $I_m\in\mathfrak{M}_{m\times m}$ is the $m\times m$ identity matrix. For a given matrix $A\in\mathfrak{M}_{m\times n}$, $A^{\mathcal{T}}\in\mathfrak{M}_{n\times m}$ is the transpose of A.

Questions:

1. Let $A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \in \mathfrak{M}_{2\times 2}$ and consider the standard basis of $\mathfrak{M}_{2\times 2}$

$$\mathbf{e}_1 = \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], \mathbf{e}_2 = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right], \mathbf{e}_3 = \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right], \mathbf{e}_4 = \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right].$$

Let $T: \mathfrak{M}_{2\times 2} \to \mathfrak{M}_{2\times 2}$ be a map given by

$$T(X) = A \cdot X - X^{\mathcal{T}} \cdot A.$$

- (a) (10 %) Show that T is a linear transformation and give the matrix for T with respect to the standard basis.
- (b) (10 %) Determine ker(T) and image(T).

2. Let
$$A = \begin{bmatrix} -1 & -4 & 4 \\ 0 & 1 & 0 \\ -2 & -4 & 5 \end{bmatrix}$$

- (a) (8 %) Show that A is diagonalizable.
- (b) (12 %) Find an invertible matrix U such that $A = UA^{\tau}U^{-1}$.
- 3. (10 %) Given $A \in \mathfrak{M}_{m \times n}$ with $m \neq n$, prove that the set

$$\{B \in \mathfrak{M}_{n \times m} \mid AB = I_m\}$$

is either empty or an infinite set.

(背面尚有試題)

國立臺灣師範大學 101 學年度碩士班招生考試試題

Algebra

- 4. Let G be a group and consider the map $\varphi: G \to G$ defined by $\varphi(a) = a^2$ for all $a \in G$. Prove that φ is a homomorphism if and only if G is abelian. (6%)
- 5. Let G be a group of order 54. Prove or disprove each of the following statements.
 - (1) G has a subgroup of order 10. (5%)
 - (2) G has a subgroup of order 9. (5%)
 - (3) G has an element of order 9. (5%)
 - (4) G is not simple. (5%)
- 6. Let R be the ring of all real value functions on the interval [0,3] and let $I = \{f \in R \mid f(2) = 0\}$.
 - (1) Prove that I is an ideal of R. (6%)
 - (2) Prove that I is a maximal ideal of R. (6%)
- 7. Let I be the principal ideal generated by x^4+x^2+1 in $\mathbb{Q}[x]$, i.e., $I=(x^4+x^2+1)$. Is $\mathbb{Q}[x]/I$ a field? Explain your answer. (6%)
- 8. Write 470 as a product of irreducible elements in $\mathbb{Z}[i]$. You don't need to explain your answer. (6%)

(試題結束)