國立臺灣師範大學101學年度碩士班招生考試試題

科目:機率與統計

適用系所: 數學系

注意:1. 本試卷共1頁,請依序在答案卷上作答,並標明題號,不必抄題。

2. 答案必須寫在指定作答區内, 否則不予計分。

- 1. (20%) If X is a random variable such that E(X) = 3 and Var(X) = 4, determine a lower bound for the following probabilities.
 - (a) P(-2 < X < 8).
 - (b) P(0 < X < 10).
- 2. (20 $\dot{\pi}$) Let $w_s, s = 1, 2, ...$ be zero-mean independent random variables with variance σ^2 and $\mu_t = \sum_{s=1}^t w_s, t = 1, 2, ...$
 - (a) Find the expectation and variance of μ_t .
 - (b) Find $\rho(\mu_t, \mu_r)$, the correlation of μ_t and μ_r , $t, r = 1, 2, \dots$
- 3. (20%) Let U_1, U_2, \dots, U_n be a random sample from a population with probability density function

$$f(u) = \frac{1}{\theta} u^{(1-\theta)/\theta}, 0 < u < 1$$

where $\theta > 0$ is an unknown parameter. Let $V = -\frac{1}{\theta} \sum_{i=1}^{n} \log(U_i)$,

- (a) Find E(V) and Var(V).
- (b) Use the central limit theorem to obtain an approximate 95% confidence interval for θ based on V when n is large.
- 4. (20分) Consider the regression model

$$\mathbf{Y} = \beta_1 \mathbf{1} + \beta_2 \mathbf{x}_c + \mathbf{e}$$

$$= [\mathbf{1} \ \mathbf{x}_c] {\binom{\beta_1}{\beta_2}} + \mathbf{e}$$

$$= \mathbf{X} \boldsymbol{\beta} + \mathbf{e}$$

$$= \boldsymbol{\theta} + \mathbf{e}$$

where, $\mathbf{Y} = (Y_1, Y_2, \dots, Y_n)'$, $\mathbf{e} = (e_1, e_2, \dots, e_n)'$, $\mathbf{1} = (1, 1, \dots, 1)'$ is a $n \times 1$ vector, $\boldsymbol{\beta} = (\beta_1, \beta_2)'$, $\mathbf{x}_c = (x_1 - \bar{x}, x_2 - \bar{x}, \dots, x_n - \bar{x})'$, $\mathbf{X} = [\mathbf{1} \ \mathbf{x}_c]$ and $\boldsymbol{\theta} = E(\mathbf{Y}) = \mathbf{X}\boldsymbol{\beta}$.

- (a) Find $\hat{\boldsymbol{\beta}} = (\hat{\beta}_1, \hat{\beta}_2)'$, the estimate of $\boldsymbol{\beta}$, using the least square method.
- (b) Let $\hat{\boldsymbol{\theta}} = \mathbf{X}\hat{\boldsymbol{\beta}}$ and $\hat{\mathbf{e}} = \mathbf{Y} \hat{\boldsymbol{\theta}}$, show that the angle between the vectors $\hat{\boldsymbol{\theta}}$ and $\hat{\mathbf{e}}$ is a right angle.
- 5. (20%) Let $X_1, X_2, \dots, X_n \sim \text{Norm}(\mu, \sigma^2)$ and $Y_1, Y_2, \dots, Y_n \sim \text{Norm}(\alpha\mu, \sigma^2)$ are two independent random samples, respectively, where $\sigma^2 > 0$ is known and both μ , and $\alpha(>0)$ are unknown parameters.
 - (a) Use Delta Method to find the limiting distribution of $\sqrt{n} \left(\frac{\overline{Y}}{\overline{X}} \alpha \right)$.
 - (b) Describe briefly how you will use (a) to test the null hypothesis $H_0: \alpha = 1$ against the alternative hypothesis $H_1: \alpha \neq 1$.