國立臺灣師範大學 101 學年度碩士班招生考試試題

科目:普通物理 適用系所:物理學系

注意:1.本試題共1頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則不與計分

1. Two balls (A and B) having the same radius \mathbf{R} with mass $\mathbf{M}_{\mathbf{A}}$ and $\mathbf{M}_{\mathbf{B}}$ respectively undergo a two dimensional elastic collision on the x-y plane. Ball A was initially rest at the origin of the coordinate, and ball B was initially moving with a velocity of \mathbf{u} in + \mathbf{x} direction with a path of $\mathbf{y} = -\mathbf{b}$ ($\mathbf{b} < \mathbf{R}$). What are final velocity of ball A and B? (Please use the Cartesian coordinate representation.) (15 points)

- 2. A uniform disk of radius \mathbf{R} oscillates as a physical pendulum about the pivot point. Assume the gravitational acceleration is \mathbf{g} . (15 points)
 - (a) What value of distance *d* between the disk's center of mass and its pivot point gives the least period?
 - (b) What is that least period?

- 3. A very big 0.0° C ice cube is added into a thermally insulated cup containing water of mass M and temperature T° C (0 < T < 100). After the equilibrium is reached there remains ice in the cup. (20 points)
 - (a) How much ice is melted during the equilibrium?
 - **(b)** What is the entropy change of the melted ice?
 - (c) Verify if this is a reversible or an irreversible process. (The latent heat of melting per for unit mass of ice is L.)
- 4. A monochromatic light with wavelength of λ passes through a slit of width a. The incoming light is normal to the slit plane ($\theta = 0$). What is the angular dependence of diffracted light intensity $I(\theta)$ if someone detects the diffracted light far from the slits? (20 points)
- 5. A sphere (radius R) with an off-central spherical hole is uniformly charged with total charge +Q. The center of the sphere is at the origin and the hole is centered at z = R a with a radius of a. (20 points)
 - (a) What is the electric field $\vec{E}(\vec{r})$ on the z-axis? (b) What is the electric potential $\Phi(\vec{r})$? $(r = 0 \sim \infty)$

- 6. Explain the following terms: (The key mechanism should be mentioned and explained) (10 points)
 - a) Carnot's cycle
- b) ferromagnetism
- c) photo-emission

- d) superconductivity
- e) transverse Doppler effect (for light)