臺北醫學大學 101 學年度碩士班豎碩士在職專班招生入學考試

分子生物學試題

本試題第1頁;共2頁

(如有缺頁或毀損,應立即請監試人員補發)

注	一、本試題共三大題,共計 100 分。	
意事	二、請將最適當的答案依題號作答於答案用卷本上。	
項	三、試題答錯者不倒扣;題次號碼錯誤或不按順序或鉛筆作答,不予計分。	
一、選擇題:(每題2%,共14%)		
1.	Histones are that are usually associated with	
	(A) acidic proteins; DNA (B) acidic proteins; RNA	
	D basic proteins; RNA E coenzymes derived from h	istidine; enzymes
2.	Topoisomerases can:	
	A change the linking number (Lk) of a DNA molecule.	(B) change the number of base pairs in a DNA molecule.
	© change the number of nucleotides in a DNA molecule. © interconvert DNA and RNA.	© convert D isomers of nucleotides to L isomers.
0		
პ.	At which phase of cell cycle, the cell contains 4n DNA? (A) G1 (B) S	© G2
	D M E none of the above	3 02
1	Protein function can be regulated by sumoylation or phosphorylation. We call this situation as:	
4.	(A) transcriptional control	B posttranscriptional control
	© translational control	© posttranslational control
	none of the above	
5.	Protein expression is an important parameter monitoring gene's function. One of the following techniques is NOT used in	
	studying proteins:	
	(A) ELISA (B) Western blot analysis	© HPLC
	© FISH © 2-dimentional electrophore	esis
	The restriction fragment length polymorphism (RFLP) is us	
	(A) different DNA sequence	different RNA sequence
	© different protein sequence	none of the above
7.	Which technique <u>CAN BE</u> used to "knock down" gene expr	_
	RNA interferenceSouthern blotmarker exchangenone of the above	© restriction mapping
二、填充題:(每題2%,共14%)		
1.	. The protein terminates transcription for about half of all <i>E. Coli</i> mRNAs.	
2.	2. The assembly of general transcription factors to a eukaryotic promoter begins at the site of in a promoter.	
3.	In prokaryotes, can remove primer, replaces it with correct nucleotides, proofreads new strand, if errors found	
	exonuclease removes and repairs with correct nucleotides.	
4.	. The is a protective structure at each end of an eukaryotic chromosome. Specifically, the tandemly repetitive DNA	
	at the end of the chromosome's DNA molecule.	
5.	In prokaryotes, DNA replication begins at a unique site called:	
6.	In the <i>lac</i> operon of <i>E. coli</i> , is the site which is downstream from the promoter but upstream from the β -galactosidase gene.	
7.	is the term used for the imprecise pairing that occurs between the codon's 3' base and the anticodon's 5' base.	

臺北醫學大學 101 學年度碩士班暨碩士在職專班招生入學考試

分子生物學試題

本試題第2頁;共2頁

(如有缺頁或毀損,應立即請監試人員補發)

三、 問答題:(72%)

- 1. Please describe the following terms:
 - (1) epigenetic modification (3%)
 - (2) housekeeping gene (3%)
 - (3) Okazaki fragment (3%)
 - (4) Shine-Dalgarno sequence (3%)
- 2. (1) Please describe the differences between reverse transcritase-PCR (RT-PCR) and standard PCR?(5%)
 - (2) For what purpose would you use RT-PCR? (5%)
- 3. Please describe the mechanism of micro RNA in regulation of gene expression? (10%)
- 4. Please describe the mechanism of RNA processing in Eukaryote cells.(10%)
- 5. What is the melting temperature (Tm)? What kind of factors will influence the Tm value? (10%)
- 6. Eukaryotic genomic DNA containing the *Rb* gene can be cloned into plasmid that replicates in *E. coli*, but the Rb protein is not expressed from this plasmid in *E. coli*. Why? How can the expression of eukaryotic genes in bacteria be completed? (10%)
- 7. Please describe the steps of Sanger Chain-Termination method of DNA sequencing. (10%)