國立東華大學招生考試試題第一頁,共2 | 招 | 生學 | 年 度 | 101 招 生 類 別 碩士班 | |---|-----|-----|------------------------------| | 系 | 所 3 | 班 別 | 電機工程學系 電子工程碩士班、光電工程學系碩士班(乙組) | | 科 | | 目 | 電子學 | | 注 | 意 | 事項 | 本考科可使用掌上型計算機 | - 1. (4%) What are intrinsic and extrinsic semiconductors? - 2. (10%) (a) Sketch the minority carrier distribution of a uniformly doped $n^{++}p^{+}n$ BJT operated in the active mode. (b) Explain the base width modulation effect (Early effect) of the BJT. - 3. (6%) For the circuit shown in Fig.1, determine the voltages at all nodes (V_B , V_C , and V_E) and the currents in all branches (I_B , I_C , and I_E). Assume $\beta = 100$, and $V_{BE} = 0.7$ V. 4. (4%) With the knowledge that $\mu_p = 0.4 \mu_n$, what must be the relative width of n-channel and Fig.1 p-channel devices if they are to have equal drain currents when operated in the saturation mode with overdrive voltages of the same magnitude? - 5. (6%) Consider an NMOS with $k_n' = 100 \,\mu\text{A/V}^2$, $V_t = 0.8 \,\text{V}$, and W/L = 10. Find the drain currents in the following cases. - (a) $V_{GS} = 2 \text{ V}$ and $V_{DS} = 4 \text{ V}$. - (b) $V_{GS} = 4 \text{ V} \text{ and } V_{DS} = 2 \text{ V}.$ - 6. (20%) Fig.2 shows a CS amplifier. Answer the following questions. - (a) If the transistor has $V_t = 1$ V, and $k_n'(W/L) = 2$ mA/V², find V_{GS} , I_D , and V_D . - (b) Find g_m and r_o if $V_A = 100$ V. - (c) Draw a complete small-signal equivalent circuit. - (d) Find R_{in} and v_o/v_{sig} . Fig.2 ## 國立東華大學招生考試試題第2頁,共2頁 | 招 | 生 | 年 | 度 | 101 招 生 類 別 碩士班 | | |---|---|---|---|------------------------------|--| | 系 | 所 | 班 | 別 | 電機工程學系 電子工程碩士班、光電工程學系碩士班(乙組) | | | 科 | | | 目 | 電子學 | | | 注 | 意 | 事 | 項 | 本考科可使用掌上型計算機 | | - 7. (15%) Consider a pseudo-NMOS inverter in Fig.3 fabricated in a 0.25 μ m CMOS technology for which $\mu_n C_{ox} = 115 \mu A/V^2$, $\mu_p C_{ox} = 30 \mu A/V^2$, $V_{tn} = -V_{tp} = 0.5 V$, and $V_{DD} = 2.5 V$. Let the W/L ratio of Q_N be (0.375 μ m/0.25 μ m) and r=9. Assuming a total capacitance at the inverter output of 7fF, please find: - (a) NM_H and NM_L - (b) t_{PLH} and t_{PHL} - 8. (10%) The Wein-Bridge oscillator is shown in Fig.4. $R=R_1=10k\Omega$ and C=10nF. Please determine the oscillation frequency and R_2 for oscillation. - 9. (10%) Design a pseudo-NMOS logic gate circuit which performs the function of $Y = \overline{A + B + C}$. - 10. (15%) Consider a source follower in Fig.5, NMOS transistor is designed with $g_m=1mA/V$ and $r_o=150k\Omega$. C_{c1} and C_{c2} are coupling capacitors. Let $R_{sig}=1M\Omega$, $R_G=4.7M\Omega$ and $R_L=15k\Omega$. - (a) Find R_{in} , R_o , and $Av = v_o/v_i$. - (b) Find the overall small-signal gain $G_v\!\!=\!\!v_o\!/v_{sig.}$ Fig.5