招	生	學 年	度	101	招	生	類	別	碩士班	
系	所	班	別	電機工程學系碩士班(甲組)、光電工程學系碩士班(乙組)						
科			目	電磁學						
注	意	事	項	本考科可使用掌上型計算機						

- Consider two spherical conductors with radii b₁ and b₂ (b₂ > b₁) that are connected by a conducting wire. The distance of separation between the conductors is assumed to be very large in comparison to b₂, so that the charges on the spherical conductors may be considered as uniformly distributed. A total charge Q is deposited on the spheres. Find

 (a) (10%) the charges on the two spheres,
 (b) (10%) the electric field intensities at the sphere surfaces.
- 2. Calculate the amount of electrostatic energy of a uniform sphere of charge with radius b and volume charge density ρ stored in the following regions:
 (a) (10%) Inside the sphere,
 (b) (10%) Outside the sphere.
- 3. (10%) Determine the capacitance per unit length of a two-wire transmission line with parallel conducting cylinders of different radii a_1 and a_2 , their axes being separated by a distance D (where D> a_1+a_2).

- 4. (20%) We wish to coat a glass surface with an appropriate dielectric layer to provide total transmission from air to the glass at a wavelength 570 nm. The glass has dielectric constant $\epsilon_r = 2.1$. Determine the required dielectric constant for the coating and its minimum thickness.
- 5. (10%) Given a magnetic material which we shall specify to be operating in a linear mode with B = 0.4 T, let us assume μ_r = 250, and calculate values for magnetization vector and magnetic field intensity.
- 6. (10%) Find the magnetic flux density at the center of a square loop, with side 2w carrying a direct current I.
- 7. (10%) Measurements on a 0.6 (m) lossless coaxial cable at 100 (kHz) show a capacitance of 54 (pF) when the cable is open-circuited and an inductance of 0.30 (µH) when it is short-circuited. Determine the characteristic impedance and dielectric constant of its insulating medium.