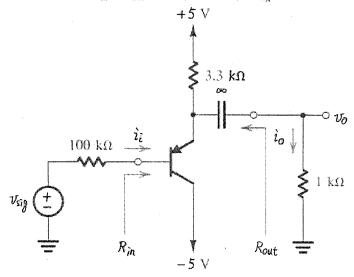
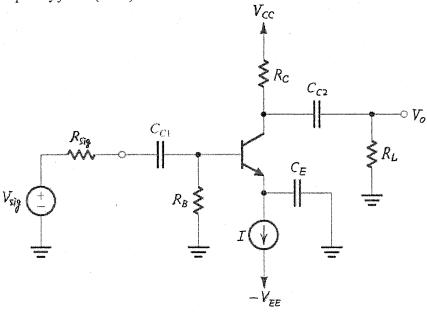

逢甲大學101學年度碩士班招生考試試題編號: 069 科目代碼

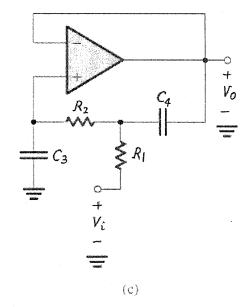

科目	電子學	ł .	電子工程學系固態電子組、電 路與系統組	時間	100 分鐘		

※請務必在答案卷作答區內作答。 共 3 頁第 1 頁

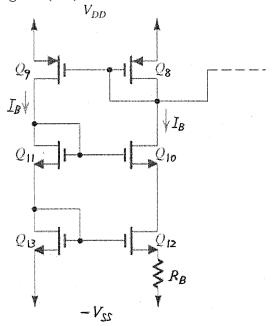
- 1. A p-n silicon step junction diode has $N_A=10^{17}$ cm⁻³, $N_D=10^{16}$ cm⁻³, $D_n=30$ cm²/s, $D_p=10$ cm²/s, $\tau_n=\tau_p=0.1~\mu\text{s}$, $n_i=1.5\times10^{10}$ cm⁻³, $A=5\times10^4~\mu\text{m}^2$, and $\varepsilon_s=11.7\varepsilon_0$. Assume that the forward current is I=0.5 mA . (a) Find the built-in potential voltage V_0 . (5%) (b) Find the forward voltage V_0 . (5%) (c) Find the diffusion capacitance C_D . (5%) (d) Find the junction capacitance C_J (Assume that $C_J\approx2C_{J0}$ where C_{J0} is the junction capacitance with no bias). (5%)
- 2. The opamp in the following figure is ideal with output saturation levels of $\pm 10 \,\text{V}$. The diodes have a constant 0.7 V drop when conducting. Find v_- , v_A , and v_O for (a) $v_I = 2 \,\text{V}$. (7%) (b) $v_I = -2 \,\text{V}$. (7%)



3. Consider the emitter follower shown below. The BJT has $\beta=100$ and $r_o=\infty$. (a) Find the dc emitter current I_E . (4%) (b) Find R_{in} , R_{out} , i_o/i_i , and v_o/v_{sig} . (12%)


4.Consider the circuit shown below with the following cases: Vcc=VEE=10V, J=1 mA RB=100K Ω , RC=8K Ω , Rsig=RL=5K Ω , $\beta=100$, VA=100V, Cu=1pF, $f\tau=800$ MHz, Please calculate

- (a) Midband voltage gain AM=? (Vo/Vsig) (10%)
- (b) Upper -3dB frequency fH=? (10%)



(a)

- 5. Analyze the circuit shown below to answer the following questions
- (1) The transfer function Vo(s)/Vi(s) (5%) (3) The pole frequency ωo (5%)
- (2) The pole quality factor Q(5%) (4) The DC gain=? (5%)

- 6. Consider the bias circuit shown below with the geometric ratio (W/L)8=(W/L)9=(W/L)10=(W/L)11=(W/L)13=20, and (W/L)12=80. Also, we have $\mu_n C_{ox} = 90uA/v^2$, answer the following questions
- (1) Find the value of RB that makes bias current IB=10uA (5%)
- (2) Find the transconductance gm12 (5%)

