逢甲大學101學年度碩士班招生考試試題編號:048 科目代碼:

科目 熱力學	科目	熱力學		才料科學與工程學系	時間	100 分鐘
----------	----	-----	--	-----------	----	--------

※請務必在答案卷作答區內作答。

- 1. (15%) The virial equation of state for n-butane at 460 K is $Z = 1 + A/V + B/V^2$ in which A = -265 cm³/mole and B = 30,250 cm⁶/mole². Calculate ΔG when the volume of one mole of n-butane is decreased from 400 to 200 cm³ at 460 K.
- 2. (15%) For an ideal gas, show that $dS = (nC_v/T)dT + (nR/V)dV$.
- 3. The initial state of one mole of a monotomic ideal gas (γ =5/3) is P = 12 atm and T = 300K. Calculate Δ S, Δ U, Δ H of the gas for
 - (a) (10%) an isothermal decrease in the pressure to 1 atm;
 - (b) (10%) a reversible adiabatic expansion to a pressure of 1 atm.
- 4. (25%) The variation, with composition, of G^{XS} (excess molar Gibbs free energy) for a regular solution system, liquid Fe-Mn alloys, at 1927°C is listed below.

$$X_{\text{Mn}}$$
 0.1 0.2 0.3 0.4 0.5 G^{XS} joules 360 640 840 960 1000

Calculate the following answers assuming that the solution still exhibits regularly at a temperature of 2127 °C.

- (a) The respective \overline{G}_{Fe}^{XS} and \overline{G}_{Mn}^{XS} (partial excess molar Gibbs free energy of component Fe and Mn) at X_{Mn} =0.6 at 2127°C.
- (b) The ΔG^M (molar Gibbs free energy of mixing) at $X_{Mn} = 0.6$ at 2127°C.
- (c) The respective activities of Mn and Fe in the alloy of $X_{Mn} = 0.4$ at 2127°C.
- (d) The respective partial pressures of Mn and Fe exerted by the alloy of $X_{Mn} = 0.4$ (as the same case in (c)) at 2127°C. The saturated vapor pressures of liquid Mn and liquid Fe are given by

$$\ln P_{Mn}^{\circ}(atm) = -\frac{33,440}{T} - 3.02 \ln T + 37.68$$

$$\ln P_{Fe}^{\circ}(atm) = -\frac{45,390}{T} - 1.27 \ln T + 23.93$$

5. (10%) A CH₄-H₂ gas mixture at 1 atm total pressure, in which $p_{\rm H2}$ = 0.9425 atm, is equilibrated with an Fe-C alloy at 1000 K. Calculate the activity of carbon with respect to graphite in the alloy. What would the value of $p_{\rm H2}$ in the gas mixture (at $P_{\rm total}$ = 1 atm) have to be in order to saturate the Fe with graphite at 1000 K. Given:

$$2H_{2(g)} + C_{(gr)} = CH_{4(g)}$$
 $\Delta G^{\circ} = -91040 + 110.7T$ J

6. (15%) For the reaction $M_{(s)} + O_{2(g)} = MO_{2(s)}$ in $\Delta G - T$ diagram, if $M_{(s)}$ and $MO_{2(s)}$ are present in solution with respective activities of a_M and a_{MO2} , show a plot of the differences in ΔG between the reactions $M_{(s)} + O_{2(g)} = MO_{2(s)}$ and $M_{(in\ solution)} + O_{2(g)} = MO_{2(in\ solution)}$ at a temperature of T in the case of $a_{MO2}/a_M = 1$, $a_{MO2}/a_M > 1$, and $a_{MO2}/a_M < 1$, respectively. And, the corresponding lines for the equilibrium partial pressures of oxygen should be also plotted.