逢甲大學101學年度碩士班招生考試試題編號:034 科目代碼:

$ \mathbf{v} - \mathbf{v} - \mathbf{v} - \mathbf{v} \mathbf{v} = \mathbf{v} + \mathbf{v} $		微積分	2 K 科技管理研究所		100 分鐘
--	--	-----	--------------	--	--------

※請務必在答案卷作答區內作答。

共 2 頁第 1 頁

一、填充題 (75%) [每一題 5 分,請依序填下答案於答案卷上,<u>勿列出計算過程</u>]

1. If $z = f(x, y) = 200 - 0.005x^2 - 0.01y^2$, find a vector giving the direction in which f(x, y) decreases quickest at the point (x, y, z) = (100, 50, 125):

$$2. \frac{\partial^3}{\partial x \, \partial y \, \partial y} \left(\frac{x^2 y^3 + 2x y^4}{12} \right) = \underline{\hspace{1cm}}.$$

- 3. The equation of the tangent line to the graph of $y = x^e + e^x$ at x = 1 is _____.
- **4.** The slope of the tangent line to the graph of $y = (x+2)^{1/x}$ at x=1 is ____.
- 5. By using the linearization of $f(x) = \sqrt[5]{x}$ at x = 32 to approximate $\sqrt[5]{31.8}$, we have $\sqrt[5]{31.8} \doteq$ _____.
- **6.** The vertical asymptote(s) of the graph of $f(x) = \frac{6x 2x^2}{x^2 4x + 3}$ is (are) _____.
- 7. The horizontal asymptote(s) of the graph of $f(x) = \frac{2x}{\sqrt{x^2 + 3}}$ is (are) _____.
- **8.** If $xy^2 x^2y = 2$, then $\frac{dy}{dx}$ at the point (x, y) = (1, -1) is _____.

9.
$$\int \frac{\sqrt[3]{\ln x}}{x} dx =$$
_____.

$$10. \int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx = \underline{\qquad}.$$

11.
$$\int x^2 \ln x \, dx =$$
_____.

12.
$$\int_0^1 \int_y^1 2 \cdot e^{(x^2)} dx dy = \underline{\hspace{1cm}}.$$

- 13. The third-degree Maclaurin polynomial for $f(x) = e^{2x}$ is _____.
- 14. The limit of the sequence $\left\{\frac{n^{100}}{2^{n/2}}\right\}$ is _____.

15.
$$\lim_{x\to\infty} \left(\frac{\ln x}{100\sqrt{x}}\right) =$$
 _____.

二、計算題 (25%) [各為 5分, 10分, 10分;請寫下詳細推導、計算過程,否則不予計分]

- 1. Show that $\int_1^e \ln x \ dx = \int_1^e \frac{1}{x} dx$
- **2.** Sketch and indicate the region bounded by the graphs of y = x/2 and $x = y^2 3$. Then, express the area of the region in terms of (1) integration with respect to x, and (2) integration with respect to y. (首先,約略的畫出並標明此區域。然後,把此區域的面積分別用對x的積分式,及對y的積分式表示出來;不必解出積分值。)
- **3.** Sketch the graph of the function $f(x) = 3x^4 + 4x^3 + 1$, by discussing its increasing/decreasing, local extrema, concavity, and asymptotes. (由函數的遞增遞減、局部極值、凹凸性、及漸近線,來畫出此函數的圖形。)