逢甲大學101學年度碩士班招生考試試題編號:016 科目代碼:311

科目	自動控制	適用系所	航太與系統工程學系控制組	時間	100 分鐘
1		41.77			

※請務必在答案卷作答區內作答。

共 2 頁第 1 頁

- (20 %) Answer the following questions from the root locus diagram shown on the right
- (a) What is the approximate Characteristic Eq. for this plot(Hint: C.E.: D(s) + KN(s) = 0)?
- (b) What is the <u>range of K</u> that gives the <u>stable</u> system response?
- (c) What is the <u>range of K</u> that gives the <u>stable</u> and under-damped system response?
- (d) What is the <u>value of K</u> that gives the <u>fastest</u> system response?

- 2. (20 %) The Routh-Hurwitz Criteria method.
 - (a) Find the range of K values for which the following system will be stable.

$$S^3 + (2K - 26)S^2 + (100 - 14K)S + 4 = 0$$

(b) Find the range of K values for which the following system will be stable.

$$S^3 + 9S^2 + 26S + K = 0$$

3. (10 %) Determine the <u>condition</u> on $\underline{b_1}$, $\underline{b_2}$, $\underline{c_1}$ and $\underline{c_2}$ so that the following system is completely controllable & observable.

$$\frac{dx(t)}{dt} = Ax(t) + Bu(t) ; \quad y(t) = Cx(t)$$

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \quad B = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \quad C = \begin{bmatrix} c_1 & c_2 \end{bmatrix}$$

4. (10 %) Reduce the closed-loop transfer function of the system given below to 2nd order, and verify you result by using the Final Value Theorem with unit step input.

$$\frac{Y(s)}{R(s)} = \frac{600}{(s^2 + 22s + 120)(s^2 + 6s + 25)}$$

5. (20 %) Answer the following questions based on the Bode plot shown below:

(a) What is the approximate Transfer Function of above system:

(A)
$$TF = \frac{S+a}{S^2 + 2\varsigma\omega_n S + {\omega_n}^2}$$
 (B) $TF = \frac{a}{S^2 + 2\varsigma\omega_n S + {\omega_n}^2}$ (C) $TF = \frac{1}{(S+a)(S^2 + 2\varsigma\omega_n S + {\omega_n}^2)}$ (D) $TF = \frac{aS}{S^2 + 2\varsigma\omega_n S + {\omega_n}^2}$

- (b) What is the approximate value of constant a: (A) 1 (B) 10 (C) 100 (D) 1000.
- (c) What is the approximate value of <u>natural frequency</u> ω_n : (A) 2 (B) 10 (C) 11 (D) 20.
- (d) What is the approximate value of damping ratio ς : (A) 0.5 (B) 0.05 (C) 0.2 (D) 0.707.
- **6.** (20 %) Assume that a mass-spring-damper system is modeled by: $\ddot{x} + 2\dot{x} + K_m x = f(t)$, where x(t) is the position of the mass. If f(t) = 0, and the mass is held motionless $[i.e., \dot{x}(0) = 0]$ at x(0) = 5 before being released at t = 0.
- (a) Determine the Characteristic Equation of this system.
- (b) Find the <u>value</u> of K_m for the system to have the <u>critical damped</u> response.
- (c) Find the range of K_m for the system to have the <u>under damped</u> response.
- (d) Choose the <u>value</u> of K_m from the answer of (c) to have the <u>time constant</u> $\tau = 2$.