逢甲大學101學年度碩士班招生考試試題編號:011 科目代碼:

Section of the least	科目	化學反應工程及化工熱力學	適用	化學工程學系	時間	100 分鐘
l	.,	學	系所			

※請務必在答案卷作答區內作答。

- 1. 簡答下列問題:(15%)
 - a. 影響化學反應速率之主要參數有哪些?
 - b. 如何利用反應物濃度與時間之變化關係,求出反應速率方程式?
 - c. 理想反應器(ideal reactors)有哪些?其主要特性如何,請說明。
- 2. 有一液相反應

$$A \xrightarrow{1} R \text{ (desired)} \quad r_R = 1.2 C_A$$

 $A \xrightarrow{2} S \quad r_S = 4.0 C_A^2$

其中 $r_R imes r_S$ 分別為產物 R 及 S 之生成速率,請導出其部分產率 [fractional yield, (R/A)] 之方程式,若 $C_A = 6$ 莫耳/升[mol/L]時,其部分產率為多少? (15%)

3. 有一均相(homogeneous)反應 $2A \rightarrow 3P$, 其可能反應機構(mechanism)如下: 假設每一反應皆為基本反應(elementary reaction)

$$A \xrightarrow{k_i} P + O * \tag{1}$$

$$O^* + P \xrightarrow{k_2} A \tag{2}$$

$$O^* + A \xrightarrow{k_3} 2P \tag{3}$$

其中 k_1 、 k_2 及 k_3 為反應式(1)、(2)及(3)之速率常數,請導出其反應速率方程式(rate equation)。(20%)

- 4. A cylinder fitted with a frictionless piston containing 3.00 mol of He gas at P = 1.00 atm and is in a large constant-temperature bath at 400K. The pressure is reversibly increased to 5.00 atm. Find w (work), q (heat), and $\triangle U$ (difference in internal energy) for the process. (15%)
- 5. Derive $d\overline{H}$ (molar enthalpy) as a function of C_p (molar heat capacity at constant pressure), C_v (molar heat capacity at constant volume), ρ (density), \overline{V} (molar volume), and T (temperature). (15%)
- 6. What is the change in entropy of 1 gmol of an ideal gas which is initially at 50°C and 10 atm pressure and is expanded irreversibly to 1atm and 20°C? The molar heat capacity at constant pressure is 29.1 J/mol K. (20%)