逢甲大學 101 學年度碩士班招生考試試題 編號: 009 科目代碼:

科目	生產管理	適用系所	工業工程與系統管理學系A組	時間	100 分鐘
----	------	------	---------------	----	--------

※請務必在答案卷作答區內作答。

A. Matching (20%)

共5頁 第1頁

1. (10%)

A. Inventory held in one warehouse to			
service large number of retailers			
B. Strategic partnering			
C. Links product and process design to			
customer requirements			
D. Detract from productivity of the entire			
SCM			
E. Cause of bullwhip effect			
F. Inventory service level requires high leve			
of safety stock			
G. Chrysler's certification program			
H. Risk pooling and reducing inbound			
transportation cost			
I. Shows how only a balance between			
commitment to low prices and commitment			
to the relationship can be effective			
J. Most sophisticated of the distribution			
strategy			

2. (10%)

nilies
mers
_

B. Problems and Questions: (80%)

- World-class manufacturers compete on the five dimensions: cost, quality, flexibility, dependability and time on global market. Discuss the importance and roles of the five dimensions, and explain how to develop competitive advantages from the five dimensions. (10%)
- 2. Given the following data, use Capacity Planning Overall Factors (CPOF) to calculate the capacity required by the proposed MPS: (10%)

Total processing Time per Unit Product X — 10 minutes

Product Y — 20 minutes

Standard Allocation

Stamping	20%
Electrical	20%
Assembly	40%
Inspection	10%
Pack & ship	10%

Proposed MPS

	Period						
Product	1	2	3	4	5		
X	20	20	10	20	20		
Υ	20	30	20	30	10		

Capacity Requirements

		Period	d		
	1	2	3	4	5
Total					
Stamping					
Electrical					
Assembly					
Inspection					
Pack & ship					

3. You are given this net requirements schedule: (10%)

	Week							
	1	2	3	4	5	6	7	8
Net requirements(units)	500	500	1,000	3,000	1,500	2,500	2,000	1,000

If it costs \$6,000 to get the final assembly department ready to assemble batches of this product, it costs \$30 to carry one unit in inventory for a year, and 52 weeks per year are worked by the final assembly department, develop a schedule of completed production lots for the product and calculate the cost of your schedule by using these methods:

- a. Lot-for-lot (LFL).
- **b.** Economic order quantity (EOQ).
- c. Period order quantity (POQ) using the order period of 4.You may disregard the effects of initial inventory and safety stock on your

calculations.

4. By referring the following table:

	D_t	$F_t(\alpha = 0.3)$	$E_t = D_t - F_t$	α=0.3	Tracking
Period	(demand)	(forecast)	(error)	(MAD_t)	Signal TS_t
0				10	
. 1	120	100	20	[a]	1.5
2	140	106	34	19.3	[b]
3	160	[c]	[d]	[e]	[f]

(note: 1. Using smoothed mean absolute deviation in calculating Mad_t , 2. Show the way to find your solutions in detail, 3. Reason b. and c. with evidence)

- a. Please recalculate the positions marked with [a], [b], [c], [d], [e], and [f]. (6%)
- **b.** Are there outliers detected in demand data at period 3? (5%)
- c. Shall we continue using present forecasting method after period 3 ? (5%)

5. Suppose D is the annual demand rate, S is the set up cost, C is unit cost, yearly i is carrying "interest rate". Q is lot size. The total cost per year, TC, is the sum of ordering cost per year and carrying cost per year. Please find the most economic order quantity Q^* for the following diagram. (You must find them with mathematical derivation)

a. (5%)

b. D_1 and D_2 are annual demand rates for intervals 1 and 2 respectively. Assume the intervals P_1 and P_2 are equivalent. (15%)

6. A project network-along with activity times and costs is given in the following table.

Activity	Normal Time	Normal Cost	Crash Time	Crash Cost
1-2	3	\$40	1	\$80
1-3	2	\$50	. 1	\$120
1-4	6	\$100	4	\$140
2-4	4	\$80	2	\$130
3-4	3	\$60	1	\$140

- a. Calculate the normal completion time and normal total cost. (4%)
- **b.** To reduce the normal completion time by 3 days, please find the least-cost way, the associated total cost and completion time. (10%)