逢甲大學101學年度碩士班招生考試試題編號:007 科目代碼:

科目	控制系統	適用	機械與電腦輔助工程學系機械	時間	100	
			工程碩士班控制組		120	分鐘

※請務必在答案卷作答區內作答。

共 2 頁第 1 頁

Problem 1 (50%)

For the circuit as shown in Figure P1, $e_i(t)$ is input voltage and $e_o(t)$ is output voltage. (a) Obtain the transfer function $G(s) = E_o(s)/E_i(s)$ of this system. (b) Obtain the output $e_o(t)$ if $e_i(t)$ is a unit step function. (c) Obtain the output $e_o(t)$ for $e_i(t) = 10\sin(\omega t)$ and t > 0.

$$\begin{array}{c|c}
+ & R & + \\
e_i(t) & C & e_o(t) \\
- & - & -
\end{array}$$

Figure P1

Problem 2 (50%)

For the system as shown in Figure P2, (1) draw the root locus as K varies from 0 to infinity, and (2) determine the range of K so that the system is stable.

Figure P2

Problem 3 (50%)

Consider the open loop system with the transfer function

$$G(s) = \frac{10}{10s+1}$$

And the input $x(t) = \sin t + 0.1 \sin 1000t$

Obtain the sterdy state output $y_{ss}(t)$

Problem 4 (50%)

Consider the unity-feedback system with the closed loop transfer function

$$\frac{C(s)}{R(s)} = \frac{k}{s(s^2 + s + 1)(s + 2) + k}$$

Determine the stability of the system by the Nyquist stability method

The Nyquist diagrams of

$$G(s)H(s) = \frac{k}{s(s^2 + s + 1)(s + 2)}$$

for k = 1 and k = 2 are shown in Figure P4 (a) and (b) respectively.

- (i) When k = 1 is the system stable, why?
- (ii) When k = 2 is the system stable, why?

Figure P4