逢甲大學101學年度碩士班招生考試試題編號:005 科目代碼:

※請務必在答案卷作答區內作答。

共2頁 第1頁

- 1. 簡答或推導下列問題(每題15分,共45分)
 - A. 在一個絕熱的活塞-汽缸裝置內,是否有可能將理想氣體等溫壓縮?試解釋之。
 - B. 試證明理想氣體 $\overline{c}_p = \overline{c}_v + R_u$ 。
 - C. 畫出卡諾循環的 T-S 圖(需標示出功和熱的流向),並證其效率為 1-TL/TH。
- 2. 試求下圖此可逆過程 1-3 的總熱傳量。(15分)

- 3. 一個活塞一汽缸裝置裝有 $1.2 \text{ kg} \cdot 120 \text{ kPa} \cdot 27 ^{\circ}\text{C}$ 的氮氣, 氮氣以 $P\nu^{2}1.3 = 常數的 多變過程緩慢壓縮。在過程結束時,其體積減為一半,試求氮氣在此過程中的熵變化量。 (<math>Cp=1.005 \text{ kJ/kg} \cdot \text{K}$) (15分)
- 4. 令電流流經汽缸內的電熱器,將活塞一汽缸內 15~kg 的空氣從 $25^{\circ}C$ 加熱至 $77^{\circ}C$ 。過程中汽缸內的壓力維持固定於 300~kPa,並產生 60~kJ 的損失,試求供應的電能,以 kWh 表示。(ps: Cp=1.005kJ/kgK, Cv=0.718kJ/kgK) (25 分)
- 5. The velocity for a steady, incompressible flow in the xy plane is given by $\vec{V} = \frac{A}{x}\vec{i} + \frac{Ay}{x^2}\vec{j}$, where A=2 m^2/s , and the coordinates are measured in meters. Obtain an equation for the streamlines that passes through the point (x,y)=(1,3). Calculate the time required for a fluid particle to move from x=1 m to x=3 m in this flow field. $(25 \, \text{fg})$
- 6. If ρ is the density and \vec{V} is the velocity of a flow field, ∇ is the del operator, \bullet is the dot product and \times is the cross product, please list the flow conditions of the following equations: (a). $\nabla \times \vec{V} = 0$ (b). $\nabla \bullet \vec{V} = 0$ (c). $(\vec{V} \bullet \nabla)\vec{V} > 0$. (24 $\frac{1}{12}$)
- 7. Consider the pressure-driven flow between stationary parallel plates separated by distance 2b. Coordinate y is measured from the channel centerline. The velocity field is given by $u = u_{\text{max}}[1 (y/b)^2]$. Evaluate the rates of linear and angular deformation. Obtain an expression for the vorticity vector, $\vec{\zeta}$. Find the location where the vorticity is a maximum. (25 $\frac{1}{12}$)

8. Consider the cylindrical weir of diameter D and length L. If both of the fluids on the left and on the right have a density of ρ , find the magnitude and direction of the resultant force. (26 %)

