元智大學 101 學年度研究所 碩士班 招生試題卷

電機工程學系碩

士班

系(所)别:

組別: 電子工程組

升目: 電子學

用紙第1 頁共2 頁

●不可使用電子計算機

- Explain the internal power dissipation and charge sharing in VLSI circuit. (10%)
- Explain whether a single-stage voltage amplifier can provide both maximum voltage signal and maximum power to the next stage at the same time. (10%)
- 3. Sketch a static CMOS logic circuit that realizes the function $Y = ABC + \overline{ABC}$, (10%)
- 4. For a CMOS logic-circuit family employing a 3.3-V supply.
 - (a) Suggest an ideal set of value for the threshold voltage: V_{th}, input low and high voltages: V_{IL}, V_{IH}, and output low and high voltages: V_{OL}, V_{OH}. (10%)
 - (b) Find the noise margins: NML, NMH. (5%)
 - (c) Sketch the voltage-transfer characteristic (VTC). (5%)
- As shown in Fig. 1, assume λ=0, capacitors, C₁ and C₂, are very small, neglects all the other capacitors and transistor M₁ operates at saturation region. The transconductance of transistor M₁ is g_{m1}.
 - (a) Please Identity the feedback topology (5%)
 - (b) Please derive the open-loop gain (5%)
 - (c) Please derive the closed-loop gain (5%)
 - (d) Please derive the open-loop input impedance (5%)
 - (e) Please derive the closed-loop input impedance (5%)

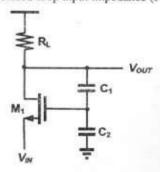
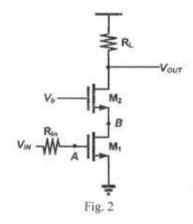


Fig. 1 168

元智大學 101 學年度研究所 碩士班 招生試題卷

電機工程學系碩 系(所)別:

士班


组別: 電子工程組

科目: 電子學

用紙第2頁共2頁

●不可使用電子計算機

- 6. As shown in Fig. 2, assume λ =0 and transconductances of transistors M_1 and M_2 are g_{m1} and g_{m2} , respectively. All of the transistors are operated at saturation region.
 - (a) Please derive the gain of the circuit from node A to node B (5%)
 - (b) At high frequency, please derive the capacitance at node A (5%)
 - (c) Please calculate the location of pole at node A (5%)
 - (d) Please calculate the location of pole at node B (5%)
 - (e) Please calculate the location of pole at Vour (5%)

