元智大學 101 學年度研究所 碩士班 招生試題卷 電機工程學系碩 士班 系(所)别: 組別: 電子工程組 升目: 電子學 用紙第1 頁共2 頁 ## ●不可使用電子計算機 - Explain the internal power dissipation and charge sharing in VLSI circuit. (10%) - Explain whether a single-stage voltage amplifier can provide both maximum voltage signal and maximum power to the next stage at the same time. (10%) - 3. Sketch a static CMOS logic circuit that realizes the function $Y = ABC + \overline{ABC}$, (10%) - 4. For a CMOS logic-circuit family employing a 3.3-V supply. - (a) Suggest an ideal set of value for the threshold voltage: V_{th}, input low and high voltages: V_{IL}, V_{IH}, and output low and high voltages: V_{OL}, V_{OH}. (10%) - (b) Find the noise margins: NML, NMH. (5%) - (c) Sketch the voltage-transfer characteristic (VTC). (5%) - As shown in Fig. 1, assume λ=0, capacitors, C₁ and C₂, are very small, neglects all the other capacitors and transistor M₁ operates at saturation region. The transconductance of transistor M₁ is g_{m1}. - (a) Please Identity the feedback topology (5%) - (b) Please derive the open-loop gain (5%) - (c) Please derive the closed-loop gain (5%) - (d) Please derive the open-loop input impedance (5%) - (e) Please derive the closed-loop input impedance (5%) Fig. 1 168 ## 元智大學 101 學年度研究所 碩士班 招生試題卷 電機工程學系碩 系(所)別: 士班 组別: 電子工程組 科目: 電子學 用紙第2頁共2頁 ●不可使用電子計算機 - 6. As shown in Fig. 2, assume λ =0 and transconductances of transistors M_1 and M_2 are g_{m1} and g_{m2} , respectively. All of the transistors are operated at saturation region. - (a) Please derive the gain of the circuit from node A to node B (5%) - (b) At high frequency, please derive the capacitance at node A (5%) - (c) Please calculate the location of pole at node A (5%) - (d) Please calculate the location of pole at node B (5%) - (e) Please calculate the location of pole at Vour (5%)