元智大學 101 學年度研究所 碩士班 招生試題卷

光電工程學系碩

士班

組別: 不分組

科目: 電子學

用紙第 / 頁共) 頁

●不可使用電子計算機

元智大學一百零一學年度 研究所考試 招生試題卷

系別:光電工程研究所 科目:電子學

Parameter: Vt= 0.026mV, ln10=2.3, e^{30} = 1x10¹³; e^{-1} =0.37; $e^{-0.2}$ =0.82; e^{-3} =0.05, $2^{1/2}$ =1.414, Parallel connection: //; 25//8 ohm= 6; 35.2//5.83= 5

- 1. (10%) Consider silicon at T = 300 K. Assume the hole concentration is given by $p = 10^{16} e^{-x/L_p} (cm^{-3})$, where $L_p = 5 \times 10^{-3}$ cm. Calculate the hole diffusion current density at (a) x = 0 and (b) x = 10^{-3} cm. Assume $D_p = 15$ cm²/s)
- (10%) Consider silicon at T = 300 K. Assume that μ_n=1350 cm²/V-s and μ_p=
 480 cm²/V-s. Determine the conductivity and resistivity if (a) N_a = 2 x 10¹⁵ cm⁻³
 and (b) N_d = 2 x 10¹⁷ cm⁻³.
- 3. (10%) A pn junction diode and a Schottky diode have equal cross-sectional areas and have forward-bias currents of 0.5 mA. The reverse-saturation current of the Schottky diode is I_S = 5 x 10⁻⁷ A. The difference in forward-bias voltages between the two diode is 0.6 V. Determine the reverse-saturation current of the pn junction diode.
- 4. (10%) Consider the circuit shown in Fig.1 . Determine $I_{BQ} \cdot I_{CQ} \cdot$ and V_{CEQ} for : (a) $\beta = 75 \cdot$ and (b) $\beta = 150 \cdot$.
- (10%) Determine the quiescent collector current and collector-emitter voltage and find the small-signal voltage gain of the circuit shown in Fig.2 . Assume the transistor parameters are: β=100 • V_{BE}(on)=0.7V • and V_A=100V.
- 6. (10%) For a common-collector configuration in Fig 3, please prove

$$Av = \frac{Vo}{Vs} = \frac{(1+\beta)(r_o \parallel R_E)}{r_s + (1+\beta)(r_o \parallel R_E)} \left(\frac{R_c}{R_c + Rs}\right)$$

- (10%) Calculate the I_{DS} and V_{DS} of a CS circuit with an n-channel enhancement-mode MOSFET in Fig 4. Find the power dissipated in the transistor.
 - Assume that R_1 =30 k Ω , R_2 =20 k Ω , R_D =20 k Ω , V_{DD} =5V, V_{TN} =1V, and K_n =0.1mA/V².
- (10%) Determine the small-signal voltage gain of a common-source circuit containing a source resistor. Consider the circuit in Figure. 5. The transistor parameters are V_{TN} = 0.8V, K_n = 1mA/V², and λ=0. (Hint: V_{GSQ} = 1.5V, I_{DQ} = 0.50mA, and V_{DSQ} = 6.26V.)
- 9. (20%) Calculate the corner frequency and maximum gain of a bipolar

元智大學 101 學年度研究所 碩士班 招生試題卷

光電工程學系碩 系(所)別:

士班

組別: 不分組

科目: 電子學

用紙第 2 頁共 2 頁

●不可使用電子計算機

common-emitter circuit with a coupling capacitor. For the circuit shown in Figure 6, the parameters are $R_1 = 5.12 \text{ k}\Omega$, $R_2 = 9.6 \Omega$, $R_C = 2 \text{ k}\Omega$, $R_E = 0.4 \text{ k}\Omega$, $R_{Si} = 0.1 \text{ k}\Omega$, $C_C = 1 \mu\text{F}$, and $V_{CC} = 10 \text{ V}$. The transistor parameters are: V_{BE} (on) = 0.7 V, β = 100, and $V_A = \infty$. (Hint: Ic = 1.81 mA)

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6