元智大學 101 學年度研究所 碩士班 招生試題卷

生物科技與工

研究所碩士班

组别: 不分組

科目: 普通化學

用紙第 1 百井 7 百

●不可使用電子計算機

Chemistry (不可使用電子計算機)

- Write the formula for: (A) calcium sulfate (3 points) (B) sodium dichromate (3 points) (C) aluminum hydroxide (3 points) (D) iron(III) oxide
 (3 points) (E) ammonium nitrate (3 points)
- 2. Describe the four laws of thermodynamics as simple as possible. (8 points)
- 3. A typical reaction mechanism is show in the following:

$$A + B \xrightarrow{k_1} AB$$

$$AB \xrightarrow{k_2} P$$

- (A) Based on rate law, write the reaction rate of disappearance for A and the reaction rate of formation for AB and P. (6 points).
- (B) Using steady-state approximation for [AB], determine the overall reaction rate in terms of [A], [B], and the rate constants. (5 points)
- Consider the high pressure reaction A→Q, In reality, the reaction might proceed by the following steps:

$$A + A \xrightarrow{k_1} A^* + A$$

$$A^* \xrightarrow{k_3} O \text{ (slow)}$$

where A* is a free radical. Please derive an expression for the rate of product formation. (6 points)

- (A) A sample of nitrogen gas has a volume of 32.4 L at 20°C. The gas is heated to 220°C at constant pressure. What is the final volume of nitrogen? (4 points)
 - (B) A gas evolved during the fermentation of sugar was collected at 22.5 °C and 702 mmHg. After purification, its volume was found to be 25.0 L. How many moles of gas were collected? (4 points)
- 6. Given the following thermochemical equations:

$$Fe_2O_3(s) + 3 CO(g) \rightarrow 2 Fe(s) + 3 CO_2(g)$$
 $\Delta H^o = -28.0 \text{ kJ}$

3 Fe (s) + 4 CO₂ (g)
$$\rightarrow$$
 4 CO (g) + Fe₃O₄ (s) Δ H° = +12.5 kJ

Calculate the value of ΔH° for the following reaction:

$$3 \text{ Fe}_2O_3(s) + CO(g) \rightarrow CO_2(g) + 2 \text{ Fe}_3O_4(s)$$
 $\Delta H^o = ? (7 \text{ points})$

元智大學 101 學年度研究所 碩士班 招生試題卷

生物科技與工程

工物外投與工任

研究所碩士班

組別: 不分組

科目: 普通化學

用紙第 2 頁共 2 頁

●不可使用電子計算機

- (A) Calculate the molality of C₂H₅OH in a water solution that is prepared by mixing 100 mL of C₂H₅OH with 250 mL of H₂O at 20°C. The
 density of the C₂H₅OH is 0.79 g/mL at 20°C? (5 points)
 - (B) How many grams of sodium hydroxide, NaOH, are needed to prepare 500 mL of 2 N solution? (5 points)
 - (C) What is the concentration of the solution prepared by diluting 200 mL of 2 M solution to a final volume of 800 mL? (5 points)
- 8. Urea [(NH₂)₂CO] is prepared by reacting ammonia with carbon dioxide: 2 NH_{3(g)} + CO_{2(g)} → (NH₂)₂CO_(aq) + H₂O_(f)
 In one process, 629.0 g of NH₃ are allowed to react with 1320.0 g of CO₂. (A) Which of the two reactants is the limiting reagent? (5 point) (B)
 Calculate the mass of (NH₂)₂CO formed. (5 point) (C) How much of the excess reagent (in grams) is left at the end of the reaction? (5 point)
- 9. Initially 1 mole of oxygen is contained in a 1-liter vessel, and 5 mole of nitrogen are in a 2-liter vessel; the two vessels are connected by a tube with a stopcock. If the stopcock is opened and the gases mix, what is the entropy change? (15 points)