試題雙面印

淡江大學 101 學年度碩士班招生考試試題

系別: 電機工程學系控制系統組 電機工程學系機器人工程所

科目:控制系統

考試日期:2月26日(星期日) 第2節

本試題共 大題, 2 頁

1. Consider a system as follow

$$\frac{d^2x}{dt^2} + 3\frac{dx}{dt} + 2x = u$$

where x is the system output and u is the control input.

(a) Write the state equation for it?

(5%)

(b) Is it a stable system? Please explain it.

(5%)

(c) Is this system controllable? Is this system observable? Please explain it.

(5%)

2. Consider a system as follow

$$\frac{d^{3}y}{dt^{3}} + 3\frac{d^{2}y}{dt^{2}} - \frac{dy}{dt} + 6y = \frac{d^{2}x}{dt^{2}} - x$$
$$y(0^{+}) = 0, \quad \frac{dy}{dt}\Big|_{t=0^{+}} = 0, \quad \frac{d^{2}y}{dt^{2}}\Big|_{t=0^{+}} = 1$$

$$x(t) = 5\sin t$$

(a) Find the output transform Y(s).

(10%)

(b) Determine the transfer function between Y(s) and X(s).

(5%)

- 3. Find the steady state error to a ramp input of the system as shown in Fig. 1. (10%)
- 4. Consider a system as shown in Fig. 2.
 - (a) Suppose that a=3, b=2 and c=6. Find the range of k for which the closed-loop system is stable. (10%)
 - (b) Suppose that the system parameters have parameter uncertainties as $a \in [2,4]$, $b \in [1,3]$ and $c \in [5,7]$. Find the range of k for which the closed-loop system is stable. (10%)

背面尚有試題

淡江大學 101 學年度碩士班招生考試試題

系別:電機工程學系控制系統組

電機工程學系機器人工程所

科目:控制系統

考試日期:2月26日(星期日) 第2節

本試題共

5/-2

- 5. Consider a system as shown in Fig. 3. Please design a PID controller, C, to satisfy all the following conditions. (10%)
 - (a) Zero steady state error for a constant input.
 - (b) A steady state error of 0.05 for a unit ramp input.
 - (c) A system damping ratio of 0.5.
 - (d) A settling time of 2sec.

- 6. Consider a unity-feedback control system whose open-loop transfer function is $\frac{as+1}{s^2}$. Determine the value of a so that the phase margin is equal to 45° . (10%)
- 7. Consider an electrical circuit as shown in Fig. 4, where $[v_1, v_2, i_2]$ is the state vector of the system, V_{out} is the output value of the system and $[V_{in}, I_{in}]$ is the control input vector of the system.

(a) Determine the state equation of the system.

(10%)

(b) Is it stable? Please explain it.

(10%)

