淡江大學 101 學年度碩士班招生考試試題

系別:機械與機電工程學系 科目:自 制

考試日期:2月26日(星期日)第2節

本試題共四大題,2頁

(寫答案時,請盡量詳述解答步驟。每小題後括號內的數字表示該小題所佔分數,四大題合計 100 分)

1. Figure 1 shows the block diagram of a closed-loop control system, where

$$G(s) = \frac{1}{(s+1)(s+2)(s^2+4s+8)}, \quad H(s) = 1$$

- (a) Write the characteristic equation as 1+Kp(s)=0; (4 分)
- (b) Locate the root loci when K=0 and $K=\infty$; (4 分)
- (c) Locate the segments of the real axis that are root loci and determine the number of separate loci, SL; (5 分)
- (d) Find the center and angles of the asymptotes for the root loci as K approaches infinity; (4分)
- (e) Determine the point at which the locus crosses the imaginary axis, using the Routh-Hurwitz criterion; (5 分)
- (f) Prove that the breakaway point on the real axis is located at s=-1.4691; (4 分)
- (g) Determine the angles of departure of the locus from the poles using the phase angle criterion; (4 分)
- (h) Complete the root locus plot approximately. (5 分)

Figure 1 Closed-loop control system

2. A control system has the transfer function T(s),

$$T(s) = \frac{Y(s)}{R(s)} = \frac{1}{s^3 + 10s^2 + 31s + 30}$$

where R(s) and Y(s) are the input and output, respectively. We express the system in a phasevariable model with the following matrix differential equation,

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -a_0 & -a_1 & -a_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} r(t)$$

$$y(t) = \begin{bmatrix} c_0 & c_1 & c_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$y(t) = \begin{bmatrix} c_0 & c_1 & c_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

In the equation, x_1 , x_2 , and x_3 are the phase variables. r(t) and y(t) are the input and output in time-domain. Please find the coefficients a_0 , a_1 , a_2 , b_0 , b_1 , b_2 , c_0 , c_1 , and c_2 . (15 %)

淡江大學 101 學年度碩士班招生考試試題

4)-2

系別:機械與機電工程學系

科目:自 動 控 制

考試日期:2月26日(星期日) 第2節

本試題共四大題,2頁

- 3. A process for an electric motor is shown as Figure 2. Please answer the following questions.
 - (a) Find the process transfer function $G(s) = \frac{\omega(s)}{v(s)}$ for the motor process; (10 %)
 - (b) Determine the transfer function of the output to a disturbance, $\frac{\omega(s)}{T_d(s)}$, where $T_d(s)$ is the disturbance; (5 %)
 - (c) A speed control is applied to the motor process to form a closed-loop control system as shown in Figure 3. Where K_p is a proportional control and k_t is the transfer function of a sensor which is utilized to feedback the speed. Calculate the closed-loop transfer function, $\frac{\omega(s)}{R(s)}$, of the motor speed control system; (5 %)
 - (d) For the closed-loop control system described in Question (c), using the final-value theorem to find the steady-state error e_{ss} if the input is a unit-step function, R(t)=1. The error is defined as $e(t)=R(t)-\omega(t)$. (5 \Re)

Figure 2 Motor process transfer function G(s)

Figure 3 Closed-loop motor speed control

4. A closed-loop control system is shown in Figure 4, where

$$\frac{Y(s)}{R(s)} = \frac{20(s+4)}{(s+2)(s^2+16s+25)}$$

Please draw the Bode diagram of frequency responses for the system. (25 分)

Figure 4 Closed-loop control system