# 淡江大學 101 學年度碩士班招生考試試題

系別:資訊工程學系

資訊工程學系資訊網路與通訊碩士班

科目:作業系統

考試日期:2月26日(星期日) 第2節

本試題共 8 大題, 2 頁

Page 1/2

## 1. Interprocess Communication (IPC) (10%)

- (a) What are two fundamental models of it? (5%)
- (b) What are their advantages and disadvantages? (5%)

### 2. **Process** (10%)

(a) Including the initial parent process, how many processes are created by the following program? Give a graphical model to explain your answer. (5%)

(b) What are the output results? Explain your answer. (5%)

```
#include <stdio.h>
#include <unistd.h>
int main()
{
    int k = 0;
    printf("%d\n", k);
    fork();    k++;    printf("%d\n", k);
    fork();    k++;    printf("%d\n", k);
    fork();    k++;    printf("%d\n", k);
    return 0;
}
```

#### 3. Deadlock Avoidance (20%)

Consider the following snapshot of a system. Suppose there are 5 processes ( $P_1$  through  $P_5$ ) and 3 different resource types (A has 10 instances, B has 5 instances, and C has 7 instances). Answer the following questions using the *Banker's Algorithm* for deadlock avoidance.

|       | <u>Allocation</u>                            | Max Required                                 | <u> Available</u> |
|-------|----------------------------------------------|----------------------------------------------|-------------------|
|       | $\overline{A}$ $\overline{B}$ $\overline{C}$ | $\overline{A}$ $\overline{B}$ $\overline{C}$ | A B C             |
| $P_1$ | 0 1 0                                        | 7 5 3                                        | ? ? ?             |
| $P_2$ | 2 0 0                                        | 3 2 2                                        |                   |
| $P_3$ | 3 0 2                                        | 9 0 2                                        |                   |
| $P_4$ | 2 1 1                                        | 2 2 2                                        |                   |
| $P_5$ | 0 0 2                                        | 4 3 3                                        |                   |

- (a) What is the value of the vector *Available*? (5%)
- (b) What is the value of the matrix *Need*? (5%)
- (c) Is the system in a safe state? Why? (5%)
- (d) If a request from process  $P_1$  arrives for (0, 2, 0), can the request be granted immediately? (5%)

### 4. **Endian** (10%)

Let A be a 4-byte integer whose hexadecimal representation is 0x12345678. (10%)

- (a) In a big-endian machine, which byte will be stored first? (3%)
- (b) Similarly, in a little-endian machine, which byte will be stored first? (3%)
- (c) Give two example CPUs (or machines) that employs big-endian and little-endian, respectively. (4%)

# 淡江大學 101 學年度碩士班招生考試試題

系別:資訊工程學系

音訊工程學系資訊網路與通訊碩士班

科目:作業系統

考試日期:2月26日(星期日)第2節

本試題共 8 大題, 2

Page 2/2

6-1 -2

## 5. Thread (10%)

Which of the following components of program state are shared across threads in a multithreaded process? (10%)

- (a) Register values,
- (b) Heap memory,
- (c) Global variables,
- (d) Stack memory.

## 6. **CPU scheduling** (15%)

Consider the following set of processes, with the length of the CPU burst time given in milliseconds.

| <u>Process</u> | <b>Burst Time</b> | <u>Priority</u> | <u>Arrival Time</u> |
|----------------|-------------------|-----------------|---------------------|
| $P_1$          | 7                 | 5               | 0                   |
| $P_2$          | 5                 | 3               | 1                   |
| $P_3$          | 2                 | 1               | 2                   |
| $P_4$          | 4                 | 0               | 4                   |
| $P_5$          | 3                 | 2               | 5                   |

Draw the Gantt chart and compute the average waiting time for each of the following scheduling algorithms:

- (a) Shortest Remaining Time First (without considering priority), (5%)
- (b) Preemptive Priority (a smaller priority number implies a higher priority), and (5%)
- (c) Round Robin (RR) with time quantum = 3 (without considering priority). (5%)

#### 7. Page Replacement (15%)

Consider the following page-reference string:

How many page faults would occur for the following replacement algorithms, assuming four frames allocated for each process?

- (a) Optimal, (5%)
- (b) LRU, (5%)
- (c) Second-chance. (5%)

## 8. Paging System (10%)

Consider a paging system with the page table stored in memory.

- (a) If a memory reference takes 100 nanoseconds, how long does a paged memory reference take (without Translation Look-Aside Buffers (TLB), an associative memory)? (5%)
- (b) If we add TLBs, and 90% of all page-table references are found in the TLBs, what is the effective memory reference time? Assume that finding a page-table entry in the TLBs takes 20 nanoseconds. (5%)