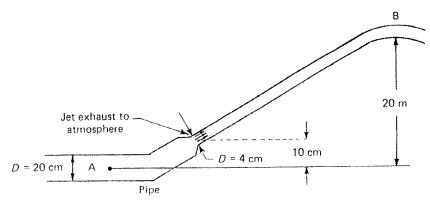
淡江大學 101 學年度碩士班招生考試試題

系別: 航空太空工程學系

科目:流 體 力 學

考試日期:2月26日(星期日) 第2節


本試題共 5 大題,

頁

- 1. The speed of sound a of a gas varies with pressure p and density ρ . Show by dimensional analysis or Buckingham theory that for this sound speed a, the proper form must be a= (constant) $(p/\rho)^{1/2}$. (20%)
- 2. The frequently used Navier-Stokes equation is as follow: $\rho \frac{\partial \overline{V}}{\partial t} + \rho \overline{V} \cdot \nabla \overline{V} = -\nabla P + \mu \nabla^2 \overline{V}$ Now explain the physical meanings of this entire equation and each term. Also for 1-D, steady, and inviscid flow, derive the Bernoulli's equation from the above Navier-Stokes equation. (20%)
- 3. Consider the 2-D velocity field given by $u=-y/(x^3+x^2y^2+y^3)$, $v=x/(x^3+x^2y^2+y^3)$, now calculate the equation of the streamlines that passing through the points (0, 7) and (3, 4). Also give a name for this flow. (20%)
- 4. The following table showing the drag coefficient C_D for a 3-D ellipsoid (橢圓體) at different conditions. Explain why these C_D values will decrease as L/d increase and the flow change into turbulent behavior. Do we need to use the Bernoulli's equation in this drag explanation? Why? (20%)

Ellipsoid:				Laminar	Turbulent
	L: L	$\int_{-}^{-} L/d$	0.75 1 2 4 8	0.5 0.47 0.27 0.25 0.2	0.2 0.2 0.13 0.1 0.08

5. A jet of water exhausts to the atmosphere through a pipe as showing in the following figure. If the velocity at point B is 10 m/s, what is the pressure at point Λ? Also calculate the mass flow rate of water through the pipe. (Hint: neglect all losses; water density is 1000 kg/m³).

