淡江大學 101 學年度碩士班招生考試試題

系別:管理科學學系

科目:統 計 學

考試日期:2月26日(星期日) 第3節

本試題共 10 大題, 2 頁

1. Suppose the length of time an electric bulb lasts, X, is a random variable with cumulative

Distribution
$$F(x) = \begin{cases} 0, & x < 0 \\ 1 - e^{-x/500}, & x \ge 0 \end{cases}$$

- Find (a) the probability that the bulb lasts beyond 300 hours. (5 points)
 - (b) the p.d.f. f(x) of X. (5 points)
- 2.Let X and Y be jointly distributed with density function $f(x,y) = \begin{cases} 1, & 0 < x < 1, & 0 < y < 1 \\ 0, & otherwise \end{cases}$

Find $F(\lambda|X > Y) = P(X \le \lambda|X > Y)$. (10 points)

3. Let X be distributed with density function $f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{for } x > 0 \\ 0 & \text{otherwise} \end{cases}$

If Y is a new random variable defined as $Y = \ln X$, find the density function of Y. (10 points)

- 4.(a) Find the moment generating function of a standard normal random variable. (6 points)
 - (b) Use the result of the part (a) to calculate the variance of this variable. (4 points)
- 5. Let X be uniformly distributed, $f(x,\theta) = \begin{cases} \frac{1}{\theta}, & 0 < x \le \theta, & 0 < \theta < \infty \\ 0, & otherwise \end{cases}$

Find the maximum likelihood estimate for the parameter $\, \theta \, . \, (10 \, {\rm points}) \,$

6. Let $f(x,\theta) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-\theta)^2}$ be a probability density function. Assuming H_0 : $\theta = \theta_0$, and

 H_1 : $\theta = \theta_1$ where $\theta_0 > \theta_1$, find the best critical region, C, for this test. (10 points)

7. Given the following pairs of measurements for the two variables:

- Y 9 12 5 15 18 20
- (a) What is the correlation between X and Y? (5 points)
- (b) Calculate the regression line Y = aX + b. (5 points)

淡江大學 101 學年度碩士班招生考試試題

系別:管理科學學系

科目:統 計 學

考試日期:2月26日(星期日) 第3節

本試題共 10 大題,

大題, 2

頁

8. The following data was gathered in an experiment comparing the effects of three insecticides in controlling a certain species of parasitic beetles. Each observation represents the number of each insects found dead in a certain fixed area containing the insecticides.

Insecticide	n_{j}	Y_{ij}	$\overline{Y}_{\!\scriptscriptstyle{\bullet} j}$	$\sum_{j=1\atop i=1}^{n_j} (Y_{ij} - \overline{Y}_{\bullet j})^2$
Ï.	4	11, 9, 13, 11	parama y	8
2	6	25, 28,31,27, 30, 33	29	42
3	5	19, 23, 19, 21, 20	20.4	11.2

Set up the ANOVA table with test statistic but without conclusion. (10 points)

9. A die was tossed 120 times and the results are listed below.

Compute the χ^2 statistic for this 1 by 6 contingency table under the hypothesis that the die was fair and the level of significance $\alpha = 0.05$ and make your conclusion (provide these two values $\chi^2_{0.05, 5} = 11.071$, $\chi^2_{0.05, 6} = 12.592$ for the critical value). (10 points)

10. Consider the following data obtained from testing the breaking strength of ceramic tile manufactured by a new cheaper process: 20, 42, 18, 21, 22, 35, 19, 18, 26, 20, 21, 32, 22, 20, 24. Suppose that experience with the old process produced a median of 25. Then test the hypothesis

$$H_0$$
: $M = 25$ against H_1 : $M < 25$; and provide the critical value $z_{0.05} = 1.645$

Use the Sign Test to make your conclusion. (10 points)