本試題雙面印刷

淡江大學 101 學年度碩士班招生考試試題

系別:保險學系

科目:統 計 學

考試日期:2月26日(星期日)第2節

本試題共二 大題, 二 頁

第一大題(含10小題,每小題7分,共70分)

- 1. Let A and B be any two events defined on S, A^C and B^C represent the complement of A and B respectively. If $P(A) = \frac{1}{2}$ (probability of A is $\frac{1}{2}$), $P(B) = \frac{1}{3}$, and $P(A \cup B) = \frac{3}{4}$, find (1) $P(A \cap B)$ (2) $P(A^C \cap B^C)$ (3) $P(A \cap B^C)$.
- 2. In actuarial science, one of the models used for describing mortality is

$$f(t) = k \cdot t^2 (100 - t)^2, \quad 0 \le t \le 100$$

where t denotes the age at which a person dies.

- (4) Find k.
- (5) Let A be the event "Person lives past 50". Find P(A).
- (6) Find the probability that a person will die between the ages of 80 and 85 given that that person has lived to be at least 70.
- 3. Consider an experiment of tossing a single die, let the events A, B and C be the following

A: Observe an even number.

B: Observe an odd number.

C : Observe a 1 or 2.

- (7) Explain and determine whether A and B are independent events.
- (8) Explain and determine whether A and C are independent events.
- 4. Consider the following PDF of two continuous variables X and Y,

$$f(x, y) = 2 + k(x + y);$$
 $0 \le x \le 1, 0 \le y \le 1$

- (9) Find the marginal PDF of Y.
- (10) Are X and Y statistically independent? Why?

淡江大學 101 學年度碩士班招生考試試題

系別:保險學系

科目:統 計 學

考試日期:2月26日(星期日)第2節

本試題共 二 大題, 二 頁

第二大題(含6小題,每小題5分,共30分)

5. The following table gives the joint PDF of the discrete variables X and Y.

	Y	
	3	6
X		
-2	0.27	0
0	0.08	0.04
2	0.16	0.10
3	0	0.35

This table tells us that the probability that X takes the value of -2 while Y simultaneously takes the value of 3 is 0.27, and so on.

- (1) Find the conditional probabilities f(X=0 | Y=6) and f(Y=3 | X=2).
- (2) If $Z = (X-1)^2$, find the expected value of Z, E(Z).
- (3) If $W = (X Y)^2$, find the expected value of W, E(W).
- (4) Compute the variance of 2X Y, var(2X Y).
- (5) Compute the expected value of Y given that X is 2, E(Y | X = 2).
- (6) Compute the variance of Y given that X is 2, var(Y | X = 2).