(101)輔仁大學碩士班招生考試試題

考試日期:101年3月9日第3節

本試題共 2 頁 (本頁為第 1頁)

科目:統計集(含計量経済集)

系所組: 台西市

(1) (45%) Suppose that the owner of FJU Movie Theaters would like to estimate weekly gross revenue as a function of television advertising expenditures (TVAdv) and newspaper advertising expenditures (NewsAdv). Consider the following two types of regressions. Regression 1 (Revenue is the dependent variable)

	coefficients	standard error	t-ratio	p-value
constant	83.230	1.574	52.88	0.000
TVAdv	\underline{A}	0.304	7.533	0.001
NewsAdv	1.301	0.321	4.053	0.010

Regression 2 (Revenue with the natural log (ln(Revenue)) is the dependent variable)

	coefficients	standard error	t-ratio	p-value
constant	4.419	0.013	330.701	0.000
$\ln(\text{TVAdv})$	0.083	0.008	\underline{B}	0.000
$\frac{\ln(\text{NewsAdv})}{}$	0.033	0.007	4.939	0.004

Analysis of Variance of Regression 1

	df	SS	MS	F	p-value
Regression	\underline{C}	23.435	11.718	\underline{D}	0.002
Error	5	2.065	\underline{E}		
Total	7	25.500			

- (a) (10%) Please find the value of A, B, C, D, E in the table.
- (b) (8%) Please write down the equation for regression 1 and interpret the coefficient of television advertising expenditures.
- (c) (8%) Please write down the equation for regression 2 and interpret the coefficient of newspaper advertising expenditures with the natural log.
- (d) (5%) How do you compare these two models?
- (e) (4%) Please compute and interpret \mathbb{R}^2 in regression 1.
- (f) (5%) Use $\alpha = 0.01$ to conduct a joint test of hypothesis to determine whether any of the regression coefficient are zero in regression 1.
- (g) (5%) Construct the confidence interval of NewsAdv's coefficient in regression 1.

※ 注意:1.考生須在「彌封答案卷」上作答。

- 2.本試題紙空白部份可當稿紙使用。
- 3.考生於作答時可否使用計算機、法典、字典或其他資料或工具,以簡章之規定為準。

(101)輔仁大學碩士班招生考試試題

考試日期:101年3月9日第3節

本試題共 2 頁 (本頁為第 2 頁)

科目:統計學(含計量経済學)

系所組: 紅江潭戶斤

- (2) (20%) FJU reported that young men in Japan watch 80 minutes of prime-time TV daily. A researcher believes that young men in Taiwan spend more time watching prime-time TV. A sample of Taiwan young men will be selected by the researcher and the time they spend watching TV in one day will be recorded.
 - (a) (4%) Please write down the null and alternative hypotheses.
 - (b) (5%) What is the Type I error in this situation? What are the consequence of making this error?
 - (c) (5%) What is the power in this situation?
 - (d) (6%) What kind of problem would you have if low power?
- (3) (10%) Suppose that $E(\hat{\theta}_1) = E(\hat{\theta}_2) = \theta/2$, $V(\hat{\theta}_1) = \sigma_1^2$ and $V(\hat{\theta}_2) = \sigma_2^2$. Consider the estimator $\hat{\theta}_3 = a\hat{\theta}_1 + (2-a)\hat{\theta}_2$.
 - (a) (5%) Is $\hat{\theta}_3$ an unbiased estimator for θ ?
 - (b) (5%) If $\hat{\theta}_1$ and $\hat{\theta}_2$ are independent, how should the constant a be chosen in order to minimize the variance of $\hat{\theta}_3$?
- (4) (10%) Let $\{Y_1, Y_2, \dots, Y_{50}\}$ are i.i.d. random variables, please find the limiting distribution of the sample sum according to the following condition.
 - (a) (5%) $Y_i \sim Poisson(3)$.
 - (b) $(5\%) Y_i \sim \chi^2(3)$.
- (5) (15%) Let $\{Y_1, Y_2, \dots, Y_n\}$ denote a random sample from the probability density function

$$f(y|\theta) = \begin{cases} (\theta+1)y^{\theta}, & \text{if } 0 < y < 1, \theta > -1 \\ 0, & \text{if elsewhere.} \end{cases}$$

- (a) (7%) Please find the method-of-moments estimator for θ .
- (b) (8%) Please find the MLE for θ .