(101)輔仁大學碩士班招生考試試題

考試日期:101年3月9日第 4 節

本試題共 2 頁 (本頁為第 1 頁)

科目: 軟體設計

系所組:資訊工程系

1. (15 points) Decide whether these statements are **True** or **False**. You must briefly justify all your answers to receive full credit.

(a) If
$$f(n) \in O(g(n))$$
 and $g(n) \in O(f(n))$ then $f(n)=g(n)$

- (b) $(\log n)^{10} \in o(n)$
- (c) There exists an O(n) sort algorithm to sort n numbers ranged from 1 to 5n.
- (d) There are $(n-1)^n$ possible tours in a weighted graph with n vertex.
- (e) Backtracking is a modified depth-first search of a tree.

2. (10 points) Take an array B such that:

$$B[i][j] = \begin{cases} B[i-1][j-1] + B[i-1][j] \end{cases}$$

for
$$0 < j < i$$

for
$$j = 0$$
 or $j = i$

Compute B[5][2] using Dynamic programming.

- 3. (9 points) Define the following Keywords.
- (a) Traveling Salesperson problem
- (b) The set NP
- (c) Clique

4. (10 points) Use Prim's algorithm to find a minimum spanning tree for the graph defined by the following array, starting with vertex V_4 . Show the actions step by step.

	1	2	3	4	5	6
1	0	INF	72	50	90	35
2	INF	0	71	70	73	75
3	72	71	0	INF	77	90
4	50	70	INF	0	60	40
5	90	73	77	60	0	80
6	35	75	90	40	80	0

5. (6 points) Find the asymptotic behavior of the function T(n) defined as follows:

$$T(1) = 1$$

$$T(n) = 2T(n/2)$$
, $n = 2^k$ (Assume that n is power of 2, k>=1)

※ 注意:1.考生須在「彌封答案卷」上作答。

(101)輔仁大學碩士班招生考試試題

考試日期:101年3月9日第 4 節

本試題共 2 頁 (本頁為第 2 頁)

科目: 軟體設計

系所組:資訊工程系

6. (50 points) Decide whether the following statements are **True** or **False**. Each correct answer get 2 points, blank answer get 0 point, wrong answer get -1 point. If the total points for Question 6 become negative, the grade for question 6 will reset to 0.

- (a) When an array is full, we can replace the array with a larger one. The doubling strategy increase the size by a constant c
- (b) Tail recursion occurs when a linearly recursive method makes its recursive call as its last step.
- (c) Binary recursion occurs whenever there are two recursive calls for each base case.
- (d) Iterative algorithms execute faster than tail-recursion because no stack needs to be maintained.
- (e) Algorithm analysis measures the reliability of an algorithm as the input size becomes large.
- (f) We can implement a queue with a singly linked list.
- (g) Objects of a stack is inserted and removed according to the FIFO principle.
- (h) Depth of a node in a tree is the number of ancestors.
- (i) Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm.
- (j) A heap is a binary tree storing keys at its nodes and satisfying the Heap-Order.
- (k) The last node of a heap is the lefttmost node of maximum depth.
- (l) Heap-sort is much faster than quadratic sorting algorithms, such as insertion-sort and selection-sort.
- (m) Hash collisions occur when different elements are mapped to the same cell
- (n) Separate chaining is simple to handle hash collision, but requires additional memory outside the table.
- (o) Double hashing uses a secondary hash function to handles collisions by placing an item in the first available cell of the series.
- (p) In practice, hashing is very fast provided the load factor is lower than 20%
- (q) Multiple items with the same key are not allowed in Dictionary.
- (r) An inorder traversal of a binary search trees visits the keys in decreasing order.
- (s) An AVL Tree is a binary search tree such that for every internal node v of T, the heights of the children of v can differ by at most 1.
- (t) The height of an AVL tree storing n keys is O(log n).
- (u) AVL Tree Trinode Restructuring has to perform only with double rotation.
- (v) A prefix code is a binary code such that no code-word is the prefix of another code-word.
- (w) A connected component of a graph G is a minimal connected subgraph of G.
- (x) A spanning tree of a connected graph is a spanning subgraph that is a tree.
- (y) A tree is an abstract model of a hierarchical structure.