(101)輔仁大學碩士班招生考試試題

考試日期:101年3月9日第 3 節

本試題共 2 頁 (本頁為第 1 頁)

科目: 通訊原理

系所組:電機工程學系碩士班甲組

1 Let $\delta(t)$ be the unit impulse function such that $\delta(t) = 0$ for $t \neq 0$ and $\int_{-\infty}^{\infty} \delta(t) dt = 1$, h(t) be a continuous function and t_0 be a time constant. (a) Find $\int_{-\infty}^{\infty} h(t) \delta(t - t_0) dt = ?$ (b) Find $h(t) * \delta(t - t_0)$ where * is the convolution operation. (8%)

- The amplitude modulation (AM) is expressed by $x_c(t) = 2(A + m(t))\cos 2\pi f_c t$ where m(t) is the message signal. If $m(t) = \cos 2\pi f_m t$ and $f_c = 10Hz$, $f_m = 1Hz$, (a) Plot the waveform of $x_c(t)$ if A=2, (b) Plot the double-sided amplitude spectra of $x_c(t)$ if A=2 (c) Find the range of A such that m(t) can be recovered by noncoherent demodulation (e.g., envelope detector). (12%)
- The additive white Gaussian noise (AWGN) is often appeared in communication systems.

 (a) What does "additive" mean? (b) What does "white" mean? (c) What does "Gaussian" mean? (12%)
- 4 Let n1 and n2 be uncorrelated, zero-mean Gaussian noise with variance σ^2 , and w1=n1+n2, w2=n1-n2. (a) Find the variance of w1. (b) Find the variance of w2 (c) Determine if w1 and w2 are uncorrelated or not (hint: random variables X and Y are uncorrelated if E(XY)=E(X)E(Y).) (12%)
- Assume that the message points in the following signal constellation are equally likely and $\phi_1(t), \phi_2(t)$ are unit-energy basis functions. (a) Determine which signal constellation has a lower symbol error rate, WHY? (b) Compute the average transmission energies of both signal constellations and determine which has minimum average energy. (8%)

※ 注意:1.考生須在「彌封答案卷」上作答。

2.本試題紙空白部份可當稿紙使用。

3.考生於作答時可否使用計算機、法典、字典或其他資料或工具,以簡章之規定為準。

(101)輔仁大學碩士班招生考試試題

考試日期:101年3月9日第 3 節

本試題共 2 頁 (本頁為第 2 頁)

科目: 通訊原理

系所組:電機工程學系碩士班甲組

- Sampling Theorem: Let signal x(t) contain no frequency components for frequencies f > W, and $x_{\delta}(t)$ be the sampled function of x(t) at every T sampling intervals, i.e., $x_{\delta}(t) = \sum_{n=-\infty}^{\infty} x(nT)\delta(t-nT)$. (a) Describe the sampling theorem. (b) What is the aliasing effect? (8%)
- 7 (a) Let $s_i(t) = \sqrt{2/T}\cos(2\pi f_i t)$, $f_i >> 1/T$, $i=1,2, 0 \le t \le T$. Derive the relation of f_1 and f_2 such that $s_1(t)$ and $s_2(t)$ are orthogonal signals, i.e., $\int_0^T s_1(t)s_2(t)dt = 0$. (5%)
 - (b) The multipath propagation in wireless communications will cause the intersymbol interference (ISI) effects. Explain the phenomenon of ISI effect. (5%)
- 8 Consider the signal s(t) plotted as follows. We want to design a filter h(t) matched to s(t).
 - (a.) Find the impulse response of the matched filter and plot it as a function of time. (5%)
 - (b.) Plot the output of the matched filter as a function of time. (5%)
 - (c.) Find the time that the peak value of the output is achieved. What the peak value is. (5%)
 - (d.) Show that a correlator receiver can be realized as a matched filter. (5%)

- Consider a set of noisy signals $x_n(t) = \alpha_n m(t) + w_n(t), 1 \le n \le N$, where α_n is a positive real fading coefficient, noise components $w_n(t)$ are zero-mean with equal power and are statistically independent, that is, $E\left[w_j(t)w_k(t)\right] = \sigma^2$ if k=j, $E\left[w_j(t)w_k(t)\right] = 0$ if $k\neq j$, and m(t) denotes a message signal with unit power. The receiver consists of a linear combiner whose output is given by $y(t) = \sum_{n=1}^{N} c_n x_n(t)$, where the parameters c_n are to be determined.
 - (a.) Simplify the output signal-to-noise ratio (SNR) by calculating $SNR_o = \frac{E[\{\sum_{n=1}^N c_n \alpha_n m(t)\}^2]}{E[\{\sum_{i=1}^N c_n w_n(t)\}^2]} = ? \quad (5\%)$
 - (b.) Use the Schwarz inequality (hint: $(\sum_{n=1}^{N} a_n b_n)^2 \le (\sum_{n=1}^{N} a_n^2)(\sum_{n=1}^{N} b_n^2)$) to find the optimum coefficients c_n to achieve the maximum output SNR. (5%)

- 2.本試題紙空白部份可當稿紙使用。
- 3.考生於作答時可否使用計算機、法典、字典或其他資料或工具,以簡章之規定為準。

[※] 注意:1.考生須在「彌封答案卷」上作答。